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Abstract

This paper evaluates an American pension option, whereby participants have the op-
tion to convert their deϐined beneϐit (DB) pension entitlements of a collective scheme
to an individual deϐined contribution (DC) plan, using contingent claim analysis. This
way, we can evaluate the participation decisions under a voluntary collective pension
scheme. We approximate the value of this optionwith risky investment returns by ap-
plying Least Squares Monte Carlo simulations as proposed by Longstaff and Schwartz
(2001). When more decision dates are included, generations are more willing to par-
ticipate in the collective pension scheme. If the funding rate falls below a critical value,
some young generations will exercise the option. As a result, other generations might
bewilling to leave aswell, which results in a collapse of the collective pension scheme.
In the absence of mandatory participation, it is only a matter of time before such a
break down occurs.
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1 Introduction

Past decades many pension systems are being revised worldwide, particularly because of
ageing problems, low interest rates and the ϐinancial crisis. Changes from deϐined beneϐit
(DB) to deϐined contribution (DC) pension schemes are frequently observed for a num-
ber of reasons. First, the increasing workforce mobility makes a DC pension schememore
attractive, since DB pension schemes are typically back-loaded. Second, the worsened ϐin-
ancial health of pension funds makes a DB pension scheme less attractive for young par-
ticipants, as their expected beneϐits might be lower than under a DC arrangement in case
they have to make up for the shortages in the DB pension scheme. Third, employers are
typically responsible for the payout under DB arrangements and they are required to put
these risks on their balance sheet under the revised accounting frameworks, making DC
arrangements preferable from the employer’s viewpoint (Broadbent et al., 2006). Despite
this current tendency from DB to DC, there are still many funded DB pension plans world-
wide. These are particularly the public sector pension plans, such as those in Australia,
Canada, Germany, the Netherlands, Norway, Switzerland, the U.K. and the sub-national
civil servants’ plans in the U.S. (Ponds et al., 2011). This paper explores the sustainabil-
ity of DB pension schemes when participants have the option to convert their DB pension
entitlements into individual DC capital.

There are several real life examples of transfers between DB and DC pension schemes.
In the United Kingdom, DB to DC transfers are permitted for private sector pensions and
fundedpublic pensions (HMTreasury, 2014). The ItalianNational PensionPlanhasoffered
an option to switch from a DB pension to DC for a limited class of workers (Bacinello,
2000). Similarly, some Australian pension plans offer a “greater of” beneϐit at retirement,
that is the maximum of a DB and DC pension scheme (Sherris, 1993). Finally, the State of
Florida provides a related example for the United States. In 2002, 600,000 public employ-
ees were given the choice of converting their collective DB plan to individual DC. For those
who elected the DC plan, the additional option to switch back was granted by the State
as well. A number of authors, such as Lachance et al. (2003); Milevsky and Promislow
(2004) investigate the value of this option. They show that this value can be substantial
for rational participants by applying the optimal exercise decision.

In some countries, participation in funded pension schemes is mandatory, which can
be motivated by a number of reasons, e.g. lower costs, irrational individual behaviour
and risk-sharing (Chen and Beetsma, 2014). Such risk-sharing can be ex-ante beneϐicial
for all participants (Ball and Mankiw, 2007; Chen et al., 2014; Cui et al., 2011; Gollier,
2008; Gordon and Varian, 1988; Shiller, 1999; Teulings and De Vries, 2006). However,
when the funding rate is too low, the scope for risk-sharing is likely to be only one-way
trafϐic, i.e. from the new participant to existing participants (Beetsma and Romp, 2013;
Beetsma et al., 2012; Siegmann, 2011). Hence, mandatory participation in collective pen-
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sion schemes has gained less support over the last years, as risk-sharing pension schemes
are to a lower extent ex-ante beneϐicial for all participants. Under the pension option con-
sidered in this paper, participants have a once-and-for-all option to leave the collective
pension fund. Since DB pension schemes are typically collective arrangements and in-
dividual pension arrangements are typically of the DC type, this speciϐic option can be
seen as providing a compromise between mandatory and voluntary participation. For ex-
ample, most pension schemes in the Netherlands are subject to mandatory participation
and are typically collective fundedDBpension schemes,while the voluntary arrangements
are typically individual DC (Chen and Beetsma, 2014). The model can be used to answer
whether a collective pension system is sustainable once mandatory participation is abol-
ished or made less stringent.

We focus on pure DC and pure DB pension schemes, whereby each participant has the
option to convert DB pension entitlements into DC pension assets. Under the DC pen-
sion scheme, a ϐixed rate of an individual’s salary is contributed to the pension fund. This
way, the individual builds up personal assets which accumulate according to the gener-
ated returns from the pension fund’s investment portfolio. Once retired, the participant
uses the accumulated assets as pension income or to buy an annuity. Under the DB pen-
sion scheme, pension entitlements are built up on the basis of a ϐixed accrual rate. Once
retired, the individual receives a ϐixed beneϐit based on his accumulated pension entitle-
ments until death. In this case, the contribution rate is determined by the ϐinancial health
of the pension fund (the so-called “funding rate”). Under the DB-DC option, the individual
starts under the DB pension scheme and has the opportunity to convert his accumulated
pension rights to individual DC pension assets. The option is of the American type, as it
may be exercised at each date until retirement. Hence, this model differs from “greater
of” beneϐit options, where at maturity the best of two outcomes can be chosen. Approx-
imation methods need to be applied for this class of options. In order to approximate the
option valuewe use themethod proposed by Longstaff and Schwartz (2001). Thismethod
is known as the Least Squares Monte Carlo (LSMC) approach.

We obtain several interesting insights from our analysis. First, ceteris paribus young
workers are more inclined to exercise the option than older workers, since the uniform
contribution rate is relatively unattractive for young generations. Second, participants
are more willing to enter the collective pension scheme when more ϐlexibility is provided
by means of more exercise dates of the option. Third, the entry funding rate threshold is
lower when investment risk is larger and when the recovery window is longer. However,
investment risk and smoothing of funding rate recovery also increase the volatility of the
funding rate, which in turn increases the uncertainty about future participation. Fourth,
if a relatively small negative shock occurs, some young generations will leave, while other
generations will stay in the collective pension scheme. However, when the negative shock
is large, it is initially optimal for a large group of young generations to exercise the option.
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As a result, quitting becomes beneϐicial for the remaining cohorts as well, because their
recovery contributions become too large. Finally, we ϐind that it is only a matter of time
before the collective scheme collapses. The system survives the coming 10 years with less
than 40% probability, while all participants have exercised the option almost surely after
20 to 40 years, depending on the parameter settings.

Our results connect to different ϐindings from the existing literature. For example,
Siegmann (2011) analyses what is the threshold on the funding rate for which an indi-
vidual would still voluntarily participate in a DB pension fund, based on expected utility.
He ϐinds that the threshold for a DB fund is between 87% and 120% in nominal terms, de-
pending on participants’ risk aversion and level of sophistication. Contrary to his utility-
based analysis, we model the participation decision as an American option based on risk
neutral valuation. Under our benchmarkparameter setting, we ϐind that entry generations
have a funding rate threshold between 84.4% and 103.7% in real terms, depending on the
ϐlexibility to leave the collective DB pension scheme in the future. Furthermore, Molen-
aar et al. (2011) explore the funding rates for which participants are willing to leave the
pension plan. They ϐind that the youngest and the oldest active members have the largest
incentive to opt-out, since the uniformcontribution is relatively unattractive for the young,
while the old are mostly affected by indexation reductions, as they have the largest accu-
mulated pension entitlements. The effect on the young generations is in line with our
results, while the effect on the old generations is not conϐirmed by our ϐindings, as we do
not consider ϐluctuations in the indexation policy.

Other literature about the incentive to participate in a collective pension fund with in-
tergenerational risk-sharing are the following. Van Hemert (2005) investigates intergen-
erational risk-sharing in a two-period overlapping generationsmodelwith four correlated
risks on human and ϐinancial capital. He shows that when no risk free asset is present, it
can be substituted by social security transfers, which enhances welfare. As a result, co-
operation by young generations is only a minor issue. However, if the risk free asset is
available, imposing an incentive constraint for the young leads to a collapse of the so-
cial security scheme. Van Bommel (2007) ϐinds that both over- and underfunding may
limit the scope of intergenerational risk-sharing, in the former case because the existing
participants prefer to liquidate the pension fund and keep its assets for themselves. In
our model, liquidation only occurs in case of underfunding, since we assume that parti-
cipants never get more than the actuarial value of their pension rights when leaving the
collective pension fund and, hence, the threat of liquidation in the case of overfunding is
not an issue. Beetsma et al. (2012) and Beetsma and Romp (2013) analyse participation
constraints in a two-period overlapping generations model with voluntary participation.
Individuals only participate in the collective pension scheme with risk-sharing when it
is more attractive than autarky, which holds for sufϐiciently strong ϐinancial market risk
and sufϐiciently high risk aversion. Furthermore, the collective scheme can only continue

4



to exist if the current young believe that the future young are prepared to participate, so
that they guarantee the future pensions of the current young. They ϐind that under many
standard parameter settings mandatory participation is needed to sustain a funded pen-
sion pillar with intergenerational risk-sharing. In contrast to the above-mentioned papers
which focus on two-period overlapping generations, we apply option pricing theory in a
stochastic framework with a continuum of overlapping generations, whereby individuals
have a continuum of participation decisions.

Several other studies have applied option pricing theory to model pension schemes.
Amongothers, Blake (1998) andTimmermanset al. (2011) treat differentpension schemes
as combinations of put and call options. Broeders et al. (2013) obtain amarket-consistent
valuation formula for liabilities of a hybrid pension plan. Friedman and Shen (2002) and
Chevalier (2006) analyse theAmericanoption of early retirement, whereby theyobtain ex-
istence, uniqueness and the properties of the optimal retirement. Fung and Chan (1995)
model the termination decision of a pension fund as an American call option and offer an
explanation why sponsors typically do not terminate overfunded pension plans. Kocken
(2006) applies riskmanagement and option pricing theory in order to analyse the risks for
corporate pension funds. He identiϐies the different stake holders of the contract and their
different risk preferences. Conϐlicts arise as certain risks cannot be fully hedged. In con-
trast to our model, he assumes a closed setting, i.e. a maturing pension fund without new
inϐlow of participants. More related to the current paper are studies applying the LSMC
approach to pensions and life insurance products. A number of examples are Bernard and
Lemieux (2008); Boyer and Stentoft (2013); Cathcart and Morrison (2009); Pelsser et al.
(2007). A particular new feature of the current paper is that we derive an algorithm to
determine the individual’s optimal continuum of participation decisions, by modelling it
as an American option. Our model reveals that this ϐlexibility makes participants less in-
clined to leave the collective pension scheme.

This paper also connects to the literatureon stability of pensionplans. Dufresne (1989)
analyses how the ϐluctuations in contributions, assets and liabilities can be lowered. Chen
and Romp (2015) show how to model the policies of funded pension schemes by imple-
menting regulation to the policy instruments. This way, global stability is assured, regard-
less the degree of risk-sharing and the type of pension plan (DB, DC or hybrid). This paper
applies this method to prevent exploding simulations.

The remainder of this current paper is as follows. Section 2 lays out themodel and Sec-
tion3presents thebenchmarkparameter settings. In Section4, in order to gain somebasic
insights, we ϐirst investigate the decision to participate in the pension scheme for a ϐixed
number of exercise dates. Then, Section 5 presents the approximation algorithm for the
American option based on Longstaff and Schwartz (2001), together with some prelimin-
ary results. Section 6 explores the interrelation of participation decisions, wherewe ϐind a
critical threshold forwhich the collective pension scheme completely breaks down in case
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the funding rate falls below this threshold. In Section 7, we investigate under what condi-
tions cohorts newly entering the labourmarket are willing to participate in the DB funded
pension scheme. Section 8 explores the distribution of the pension fund’s life-length. Sec-
tion 9 concludes the main text of this paper. Some technical details and additional ϐigures
are relegated to the Appendix.

2 The Model

In this section, we lay out the model. Section 2.1 describes the economy and its underly-
ing processes. In Section 2.2, we discuss the valuation method. Section 2.3 explains the
different pension plans.

2.1 Economy and Individual Lifetime

All processes in themodel are speciϐied under a risk neutralmeasureQ andwe assume the
only source of risk is the return on investments. The investment portfolio of the pension
fund follows a geometric Brownian motion:

dPt =rPtdt+ σPtdWP,t.

Hence, the drift term is exactly the risk free rate r under the risk neutral measure, where
Pt is the value of the investment portfolio.

One period corresponds to a year. An individual’s working period is from age t0 to tR
and the retirement period is from age tR to tD. We assume that his wage is constant and
normalized to one per period:

ws =

1, for s ∈ [t0, tR] ,

0, otherwise.

A fraction ct of wage in period t is contributed to the pension fund.

2.2 Valuation Method

At time t, the price of a security with random pay off Xs at s ≥ t is given by Πt (Xs).
According to themartingale representation theory, we can price securities with respect to
the expectation under the risk neutral measureQ. Hence, we obtain

Πt (Xs) = exp [−r (s− t)]EQ
t (Xs) ,
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whereEQ
t is the expectation under the risk neutral measureQ conditional on information

up to time t. We assume that the market is complete and, therefore, the nominal interest
rate is theuniquenuméraire. We take this valuationmethodas the “actuarially fair pricing”
method.

2.3 The Pension Schemes

There are three types of pension schemes: (i) the individual DC pension, (ii) the collective
DB pension, and (iii) the DB-DC pension option.

2.3.1 The Individual Deϐined Contribution (DC) Pension

For a generation born at date t, the accumulated pension assets at age s are given by

ADC
t,s =

∫ s

0

cDC Pt+s

Pt+u

du, for s ∈ [t0, tR] ,

where cDC is a ϐixed contribution rate. Retirement takes place at the age of tR, where the
amount of assets given by ADC

t,tR
are used to buy an annuity according to the market price

of annuities, such that a ϐixed retirement income is obtained until the age of death tD. The
constant annuity beneϐit is given byBDC , which are obtained by

ADC
t,tR

=EQ
t+tR

{∫ tD

tR

exp [−r (s− tR)]B
DCds

}
⇐⇒ BDC =rADC

t,tR
/ {1− exp [−r (tD − tR)]} .

Furthermore, this pension scheme is actuarially fair by construction:

Πt+s

(
ADC

t,s

)
=ADC

t,s .

2.3.2 Collective Deϐined Beneϐit (DB) Pension

Denote It as the set of all age groups participating in the collective pension scheme at time
t. Under full participation It = {s : s ∈ [t0, tD]} ,∀t. The total mass of working agents in
the collective pension scheme at time t is given by

mw
t =

∫
{s:s∈[t0,tR]}∩It

1ds

and the total mass of retirees at time t is

mr
t =

∫
{s:s∈[tR,tD]}∩It

1ds.
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Workers accrue pension entitlements at a constant rate, until they retire. Hence, the
pension entitlements of a participant of age s are:

Bs =

ψs, for s ∈ [t0, tR] ,

BtR , for s ∈ (tR, tD) ,

=min (s, tR)ψ,

where ψ is the accrual rate and BtR is the constant beneϐit that the participant receives
during retirement. Note that accrued entitlements are not indexed, i.e. the indexation
rate is zero. The total volume of pensions paid by the pension fund is:

BTOT
t =mr

tBtR .

The discount factor of DB pension entitlements at age s is given by

Rs =

exp [−r (tR − s)]
∫ tD
tR

exp [−r (u− tR)] du, for s ∈ [t0, tR] ,∫ tD
s

exp [−r (u− s)] du, for s ∈ (tR, tD) ,

=
1

r
exp {−r [tR −min (tR, s)]} (1− exp {−r [tD −max (tR, s)]}) .

Hence, the actuarially fair price for DBpension entitlements at time t for a participantwith
age s is:

Πt (Bs) =RsBs,

while the liabilities of the pension fund under the DB pension scheme are given by:

Lt =

∫
It

RsBsds.

Then, the process of the liabilities is as follows:

dLt =Lt+dt − Lt =

∫
It+dt\It

RsBsds−
∫
It\It+dt

RsBsds,

where It+dt\It is the inϐlowof age groups and It\It+dt is the outϐlowof age groups in period
t+ dt. Here, It+dt \ It is the set of participants in t + dt that were not yet participants in t
and It \ It+dt is the set of participants in t that are no longer participant in t + dt. Under
full participation we have It+dt \ It = ∅ and It \ It+dt = ∅, so the liabilities are constant
(dLt = 0).
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The process of the pension fund’s assets is denoted by

dAt =
dPt

Pt

At +
(
Ct −BTOT

t

)
dt.

Hence, the pension assets grow according to the portfolio returns
(

dPt

Pt

)
plus the total

volume of contributions (Ct = mw
t ct)minus the total volume of beneϐit payments.

The pension fund is subject to investment risk, which is partly absorbed by the funding
rate and partly covered by the participants through contribution rate ϐluctuations. The
funding rate is given by:

Ft =At/Lt.

The pension fund is required to fulϐil regulation imposed by the regulator. The regulator
requires the pension fund to reduce the gap with the target funding rate F̄ by setting

EQ
t

(
Ft+dt − F̄

)
=αdt

(
Ft − F̄

)
, 0 < α < 1, (1)

where α denotes the smoothing parameter. This rule ensures that the funding rate grav-
itates towards F̄ . For α close to one, funding rate recovery is smoothed out over a longer
horizon, and vice versa. Appendix A.1 shows that the regulation policy can be rewritten
to:

EQ
t

(
Ft+s − F̄

)
=αs

(
Ft − F̄

)
, ∀s ≥ 0.

Because the indexation rate and the accrual rate are constant, the only instrument
through which the pension fund can respond to risks is the contribution rate, which is
endogenously determined by Eq. (1). Appendix A.2 shows how Eq. (1) can be rewritten
to the following contribution rate policy:

ct =
1

mw
t

[
(logα)

(
At − F̄Lt

)
+ FtE

Q
t

(
dLt

dt

)
− rAt +mr

tBtR

]
.

2.3.3 DB-DC Option

The individual starts accumulating pension rights according to the DB pension scheme.
This is the default situation. Participants are allowed to opt out from themoment that they
start their working life until the retirement age tR.1 If at age tR the opting-out possibility
has not yet been exercised, then the participant receives an annual retirement beneϐitBtR

1A thorough analysis of default options for pension plans is provided by Madrian and Shea (2001), who
ϐind that only a few people decide to opt out.
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Table 1: Choice of parameter values

Description Symbol Value
Entry age t0 0
Retirement age tR 40
Age of death tD 60
Target funding rate F̄ 1
Funding rate smoothing α 0.5
Interest rate (risk free) r 0.02
Portfolio return volatility σ 0.15
Wage w 1
Accrual rate ψ 70%/tR

until death. If the option is exercised by an agent with age s < tR and at time t + s, then
the pension rights Bs are converted into personal assets ADC

t,s . The amount of personal
assets obtained for somebodywith age s at time t+s depends on the actuarial price of the
accumulated pension entitlements and the funding rate:

ADC
t,s =min (1, Ft+s)Πt+s (Bs) .

Hence, in the case of underfunding the market value of the pension entitlements is multi-
plied by the funding rate. We assume that at most an amountΠt+s (Bs) can be taken out of
the pension fund by exercising the option. Otherwise, if Ft+s > 1 at retirement date, the
participant would always exercise his option and be able to buy a larger annuity than he
would get as retired participant of the pension fund.

After exercising, thepensionarrangement continues as an individualDCpension scheme
from time t+s onwards. Then, the personal assets further accumulate during the remain-
ing part of his working life according to

ADC
t,v =ADC

t,s

Pt+v

Pt+s

+

∫ v

s

cDC Pt+v

Pt+u

du, for v ∈ [s, tR] .

3 Parametrization

Table 1 reports the choice of the benchmark parameter values. As a robustness check, we
will later also explore other parameter settings. We assume full participation, i.e. It =

{s : s ∈ [t0, tD]} ,∀t. Our analysis is based onQ = 104 simulation runs. Time steps need to
be small to approximate continuous time. We set the time steps at δ = 0.1, which means
that there are 10 exercise dates per annum. For convenience, the benchmark calculations
are based on a generation who starts working at time t0 = 0, such that time equals age.
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4 European and Bermudan Option

Before analysing the American option and to obtain a better understanding of the results,
we start by studying the European option, which can only be exercised at maturity date,
and the Bermudan option, which can be exercised at a prespeciϐied set of dates.

4.1 The European Option

If the only exercise date is at age s = tR, then it is never beneϐicial to exercise the option,
since:

min (1, FtR)ΠtR (BtR) ≤ΠtR (BtR) .

Clearly, for FtR < 1 it is not optimal to exercise, while for FtR ≥ 1, the participant would
be indifferent between exercising or not exercising. We adopt the convention that in case
of indifference the option will not be exercised.

4.2 The Bermudan Option

Suppose there is a ϐixed set of exercise dates t ∈ {t0, t1, t2, . . . , tR}. At each exercise date
we explore what is the threshold level on the funding rate at which it becomes proϐitable
to exercise the option. Because the DB pension entitlements become more valuable as
one gets closer to retirement and the contribution rate is equal across all working gener-
ations, i.e. it is “uniform”, one might expect the threshold on the funding rate at which an
individual prefers to quit the pension fund to fall as one gets older.

Step 1: two exercise dates (t ∈ {t0, tR}) As shown above for the European option, the
individual will not exercise the option at time tR. At age t0 = 0 the individual exercises
the option to exit the collective DB pension scheme if the funding rate falls below some
threshold, denoted by Γ0, that we determine below.

The DB pension scheme is attractive when discounted beneϐits exceed expected dis-
counted contributions:

exp (−rtR)ΠtR (BtR) ≥ EQ
0

[∫ tR

0
cs exp (−rs) ds

]
⇐⇒

(
F0 − F̄

)
(1− exp {−tR [r − (logα)]}) ≥[

1

rL̄
(tD − tR)BtR − F̄

]
[1− exp (−rtR)]−

tR
L̄

exp (−rtR)ΠtR (BtR) . (2)

Appendix A.4 presents the derivation of the last inequality. The right-hand side (RHS) of
the last line is constant, while the left-hand side (LHS) depends on the initial funding rate
F0. In Figure 1, the LHSminus the RHS is shown for different starting funding ratesF0. We
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Figure 1: Participation is beneϐicial at entry (t0 = 0) if LHS −RHS > 0 in Eq. (2).

observe that the DB pension scheme is more attractive when F0 ≥ Γ0 = 103.7%. Hence,
if the funding rate falls below Γ0, the expected future contribution payments exceed the
value of the future beneϐits, which makes the individual unwilling to enter the collective
DB plan.

The actuarially-fair contribution rate is lower than the contribution rate under the col-
lective pension scheme that is in line with the target funding rate Ft = F̄ = 1. Appendix
A.5 provides the proof. Under the benchmark parametrization, these contribution rates
are cac = 18.83% and ceq = 19.86%, respectively. Hence, when the funding rate is at
100%, an entry participant expects to pay larger contributions under the collective pen-
sion scheme than the market value of his future retirement beneϐits. This way, the entry
threshold Γ0 is larger than 100%.

Step2: three exercise dates (t ∈ {t0, tM , tR}) Again, the individualwill not exercise the
option at age s = tR as explained above. At the age of tM the individual exercises the option
when the value of stopping exceeds the value of continuation. The value of stopping at age
tM is:

StoptM =min (1, FtM )ΠtM (BtM ) (3)

and the value of continuation at age tM is:

ConttM = exp [−r (tR − tM)] ΠtR (BtR)− EQ
tM

{∫ tR

tM

cs exp [−r (s− tM)] ds

}
. (4)
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Figure 2: The value of continuation (Eq. (4)) versus the value of stopping (Eq. (3)) at age
tM .

For the age of tM = 3
4
tR, the values of stopping and continuation are plotted in Figure

2a. The value of stopping is constant at ΠtM (BtM ) for FtM ≥ 1 and falls with a fall in the
funding rate if FtM < 1. The value of continuation is linearly increasing in the funding
rate, which is formally shown in Appendix A.6. In Step 1, we have thatCont0 = Stop0 for a
funding rate F0 = 103.7%at age 0, while in Figure 2 we observe thatConttM > StoptM for
FtM = 103.7% and tM > 0, which is due to the uniform contribution rate. In other words,
the value of continuation is strictly larger than the value of stopping for a funding rate of
FtM = 103.7%at age tM > 0, since the funding rate threshold is Γ0 = 103.7%at entry and
decreases with age.

In Figure 2b, we plot the differences between the value of continuation and the value
of stopping for ages tM = 1

4
tR, tM = 1

2
tR and tM = 3

4
tR. Low funding rates mean that,

for given pension beneϐit, participants have to pay high future contributions if they do not
leave the pension fund, while the opposite is the case for high funding rates. Due to the
uniform contribution rate, it is strictly optimal to continuewhen the funding rate is exactly
103.7%, as explained above. We observe that it is never optimal to exercise the option at
ages s ≥ 3

4
tR. However, for ages s ≤ 1

2
tR the value of continuation can be lower than the

value of stopping in case of low funding rates. Hence, the option of leaving the pension
fund only adds some value when the participant is not too advanced in his career.

The exercise decision at an age tM > 0might lower the participation threshold at entry
(Γ0). Without the option to convert to DC at the age of tM , the individual enters the col-
lective DB pension scheme only when F0 ≥ 103.7%. However, if we consider for example
the option to convert after one year of entry (tM = 1), the individual already participates
for funding rates F0 ≥ 96.6%. The reason is that the funding rate might recover during
the ϐirst year. If not, the participant still has the option to leave at age tM = 1.
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Figure 3: Funding rate participation threshold for an entry generation when one exercise
date is included at age tM .

Figure 3 shows the participation thresholds Γ0 for an entry generation as a function of
tM , given that there is exactly one exercise date tM > 0of the option in addition to the entry
and retirement date. The option does not add much value when tM ≥ 15, since the entry
threshold is still above 103%. For extremely low tM (say tM < 0.1) the option is almost
similar to the decision at t0 and, therefore, it does not change the entry threshold much
either. When the exercise decision is at age tM ∈ [0.1, 6], the entry threshold is less than
100% and, therefore, the option is most valuable in that interval. This is particularly due
to the upside potential of the option: barely any pension entitlements have been accumu-
lated, such that not muchwould be lost by leaving at tM ∈ [0.1, 6], but there is a possibility
that the funding rate improves during t ∈ [t0, tM ], thereby beneϐiting the participant.

Step 3: multiple exercise dates (t ∈ {t0, t1, . . . , tR}) So far, we only considered one in-
termediate exercise date at age tM . Including additional exercise dates makes the the op-
tion to leave more valuable. For example, with only one intermediate exercise date tM =

0.4 we found that Γ0 = 96.3%. Adding additional exercise dates pushes the threshold Γ0

below 96.3%. Below we will approximate the American option by adding more and more
exercise dates.
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Figure 4: “In-the-money” funding rate thresholds (ΓtM ) at different ages tM .

5 Approximation Method American Pension Option

We use the Least Squares Monte Carlo (LSMC) approximation method proposed by Long-
staff andSchwartz (2001) todetermine theoptionvalueby solving the funding rate thresholds
at each exercise date using backward recursion. The American Option is approximated by
choosing a small partition t ∈ {t0, t1, t2, . . . , tR} for the exercise dates of the Bermudan
Option. Here we describe the approximation method.

Step 1: deϐine “in themoney” thresholds Wedenote “in themoney” when the funding
rate is such that exercising would be optimal, in case there is no such option in the future.
However, the actual exercise thresholds are lower than these “in the money” thresholds,
because the participant can exercise the option in the future as well. In other words, when
the funding rate is in the “out of the money” region, which holds for funding rates above
the “in themoney” thresholdsΓ, then it is deϐinitely optimal to not exercise the option. For
funding rates “in the money” itmay be optimal to exercise, but not necessarily due to the
future possibilities to exercise.

These funding rate thresholds at different ages tM , given that there is no option to ex-
ercise at age s > tM , are shown in Figure 4. We observe that the thresholds decrease over
time, as quitting becomes less beneϐicial when older. We ignore exercise ages s > 28, since
it is extremely unlikely that the funding rate will fall below Γ28 = 34.4%.
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Step 2: deϐine values at ϐinal decision date We need to determine the optimal exer-
cise decisions using backward recursion. We start at maturity, which takes place at the
retirement age tR, and determine whether it is optimal to exercise and register the cor-
responding payout. However, as we have seen above, we can ignore option decisions at
ages s > 28, since it is extremely unlikely that the value of quitting is larger than the value
of continuation at these ages. In order to save computation time, we take tend = 28 as
the ϐinal decision date. Then, we run Q simulation paths and set up a [Q× 1]−vector
ExTime, where each element equals tend. Similarly, we deϐine a [Q× 1]−vector Payout,
which equals max (Cont, Stop) at age tend. We obtain Payout = Conttend

, since the “in the
money” threshold at that age is 34.4% (see Figure 4) and we have no simulations below
this threshold. We initialise by setting told = tend

Step 3: move one step back in time with step size δ We now consider the simula-
tion values at age t = told − δ. In case the funding rate is “out of the money”, which
holds for funding rates higher than the “in the money” thresholds shown in Figure 4, then
continuation is optimal. Otherwise, we apply the LSMC method. Denote Λt as the set
of the simulation runs, for which the funding rate at time t is “in the money”, i.e. Λt =

{i ∈ {1, 2, . . . , Q} : Ft,i ≤ Γt}. The integer nt is deϐined as the number of elements in Λt.
The highest possible value for nt is Q, which holds when the funding rates of all simula-
tion runs are “in the money” at time t, while the lowest possible value for nt is zero, which
holds when none of the funding rate simulations at time t are “in the money”. Then, we
deϐine a new vector F̂t which consists of the period t funding rates of the “in the money”
simulations only:

F̂t =
(
Ft,Λt,1 , Ft,Λt,2 , . . . , Ft,Λt,nt

)
.

We apply the following regression model over the “in the money” paths:


Contt,Λt,1

Contt,Λt,2

...
Contt,Λt,nt

 =
[
1nt F̂t F̂ 2

t

]
β + ε,

where the left-hand side is the vector of continuation values at t of the “in the money”
simulation paths. Hence, we try to ϐit the value of continuation with a quadratic function
of the underlying asset (here: F̂t). The symbol 1nt denotes a vector of ones of length nt.
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The value of continuation at time t for simulation run i is given by:

Contt,i =Payouti exp [−r (ExTimei − t)]−
∫ ExTimei

t

cs,i exp [−r (s− t)] ds,

i.e., the discounted payout of this simulation run at the exercise dateminus the discounted
future contribution payments along this path.

Using the estimated regression coefϐicient vector β̂, we calculate the ϐitted values of
continuation as:

ˆContt =
[
1nt F̂t F̂ 2

t

]
β̂t.

Step 4: update vectors when stopping is optimal The value of stopping at age s > t

over the “in the money” paths is obtained by:

Stopt =min
(
1, F̂t

)
Πt (Bs) .

Then, for each of the “in the money” paths, we can determine whether the value of stop-
ping is larger than the approximated value of continuation, i.e. Stopt,j > ˆContt,j . For
each simulation run where stopping is optimal, the corresponding elements in ExTime
are updated to t and the corresponding elements in Payout are updated to Stopt. For ex-
ample, suppose simulation run i is “in themoney” and element j ofΛt corresponds to i, i.e.
Λt,j = i. Then, if Stopt,j > ˆContt,j , we update the elements for simulation run i by setting
ExTimei := t and Payouti := Stopt,j .

Step 5: backward recursion If t > 0, then set t := told and go back to Step 3. If t = 0,
then go to Step 6.

Step 6: determine the value of participation at entry Nowwehave the exercise times
along each path and the corresponding payouts at these dates. Hence, we can calculate the
value of continuation at the entry age t0. The value of stopping is equal to zero, because no
pension entitlements are accumulated yet. Then, the value of participation is the average
of the values of continuation over all simulation runs:

Participation =
1

Q

Q∑
i=1

Contt0,i.

Step 7: determine the funding rate threshold for participation Figure 5a shows the
values of participation at age t0 = 0 under this American option at different starting fund-
ing rates F0. The value of participation is positive for large funding rates. Due to the

17



American option, the funding rate threshold has become Γ0 = 84.41%, which is a sub-
stantially lower threshold compared to the case without an option to convert to DC (i.e.
84.41% < 103.7%). The “American-type” of the option stimulates participation in the be-
ginning when upside risk is relatively large. Since exercising at a later date is always a
possibility, the participant has some kind of downward protection, while it has relatively
large upside potential. At the beginning of the participant’s career barely any pension enti-
tlements are accumulated, while gains can be obtained after a large positive shock. Hence,
the participant has an incentive to delay exercising the option and hope for large gains.

Step 8: funding rate thresholds over life Figure 5b shows the funding rate thresholds
at other ages. Obviously, these thresholds are strictly below the “in themoney” thresholds,
because under the American option continuation ismore valuable. The gap between these
thresholds dies out, since the added value of having future exercise dates decreases over
time and, hence, the thresholds converge.

Sensitivity Analysis In order to get insights about the parameters, we explore the ef-
fects of changes in the parameter settings. First, if we decrease the standard deviation
of the portfolio returns by taking σ = 0.10, the funding rates become less volatile. The
threshold at entry increases to Γ0 = 90.2%, since the option becomes less valuable when
risk is low – see Figure 5c. The thresholds are also higher at later ages – see Figure 5d. Fig-
ure 6a shows the participation thresholds at entry for a larger range of portfolio volatilities
σ, whereby the negative relation is clearly observed. Hence, the participation thresholds
are lower when the investment portfolio is more risky.

Second, if we decrease the extent of smoothing the funding rate recovery by taking
α = 0.3, then the participation threshold increases to Γ0 = 87.6%, as shown in Figure 5e.
The thresholds increase at later ages as well – see Figure 5f. With less smoothing contri-
bution rates are raised more in the case of underfunding and, therefore, we obtain higher
participation thresholds when α is smaller. Figure 6b shows the participation thresholds
for a larger range of smoothing parameters α, whereby the negative relation is clearly ob-
served.

Finally, Figures 6c and 6d show how the funding rate thresholds vary for different tar-
get funding rates and accrual rates. As expected, the target funding rate positively affects
the participation funding rate threshold, while the accrual rate is essentially uncorrelated
with the participation threshold.

6 Interrelation of Participation Decisions

So far, we assumed full participation. For the American option to quit this holds when
funding rates are above 85%over the last tD years and, therefore, nobody had an incentive
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(a) benchmark: σ = 0.15, α = 0.5
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(b) benchmark: σ = 0.15, α = 0.5
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(c) σ = 0.10
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(d) σ = 0.10
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(e) α = 0.3
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(f) α = 0.3

Figure 5: The value of participation for an entry generation (left panels) and the funding
rate thresholds over lifetime (right panels) under the American DB-DC pension option.

19



0.05 0.1 0.15 0.2 0.25
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

P
ar

tic
ip

at
io

n 
th

re
sh

ol
d

σ

(a) varying portfolio risk σ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

P
ar

tic
ip

at
io

n 
th

re
sh

ol
d

α

(b) varying smoothing parameter α
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Figure 6: Participation threshold of an entry generation under different parameter set-
tings.
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to exercise the option. However, if investment returns are particularly low, then the fund-
ing rate falls and generations up to a certain age will leave the collective pension scheme
by exercising the option.

Suppose that at a certain time t = t̂ the funding rate is Ft̂ < Γ0, the threshold funding
rate at entry, such that it is optimal for generations up to age q to exercise the option. Then,
a participant of age s < q obtains the following amount of personal assets from thepension
fund when leaving:

ADC
t̂−s,s = Ft̂Πt̂ (Bs) =Ft̂RsBs.

The departure of the generations up to age q affects the assets and liabilities of the pen-
sion fund. The funding rate at time t̂ before the departure of generations, i.e. under full
participation, is Fold

t̂
= Aold

t̂
/Lold

t̂
. The total amount of assets taken out of the pension

fund by the departing generations is Fold
t̂

∫ q

0
RsBsds. Hence, the assets become

Anew
t̂

=Aold
t̂

− Fold
t̂

∫ q

0

RsBsds

=Fold
t̂

(
Lold
t̂

−
∫ q

0

RsBsds

)
=Fold

t̂

(∫ tD

0

RsBsds−
∫ q

0

RsBsds

)
=Fold

t̂

∫ tD

q

RsBsds

and the liabilities become:

Lnew
t̂

=Lold
t̂

−
∫ q

0

RsBsds

=

∫ tD

0

RsBsds−
∫ q

0

RsBsds

=

∫ tD

q

RsBsds.

Then, the funding rate after the departure of generations is:

Fnew
t̂

=Anew
t̂

/Lnew
t̂

= Fold
t̂

.

Hence, the funding rate is unaffected, as it remains equal to Ft̂. However, the future par-
ticipation thresholds might be affected, since a smaller group of participants cover the
burden of contribution adjustments.

Denote Îu (It) as the belief about the future participation setting at time u > twhen the
current participation setting is It. Suppose each participant believes that nobody leaves
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the collective pension scheme in the future. This includes the belief that new generations
enter at the start of their career, since they participate by default. So far, this assumption
was implicitly already made, since we did not incorporate effects from other people exer-
cising the option. Then, given current participation setting It̂ = {s : s ∈ [q, tD]}, the belief
about the participation setting at time u > t̂ becomes:

Îu (It̂) =


{
s : s ∈

[
0, u− t̂

]
∪
[
q + u− t̂, tD

]}
, for u− t̂ ∈ (0, tD − q) ,{

s : s ∈
[
0, u− t̂

]}
, for u− t̂ ∈ [tD − q, tD] ,

{s : s ∈ [0, tD]} , for u− t̂ ∈ (tD,∞) .

In the ϐirst case, the belief about the future participation setting consists of the union of
two sets. The ϐirst set consists of new age groups up to age u − t̂, while the second set
consists of participants who have decided to not exercise the option at time t̂ and are still
alive at time u. In the second case, the belief about the participation setting at time u
consists of new age groups up to age u − t̂ only, since all generations who participated
before the departure of generations at time t̂ have passed away. In the last case, there is
full participation again, which holds for time t̂+ tD onward.

In order to see the effects on the participation thresholds of the remaining generations
in the collective scheme, we consider a scenario whereby the funding rate falls to Ft̂ =

84.36%. Therefore, everybody younger than q = 10 leaves the pension fund and the new
participation setting becomes It̂ = {s : s ∈ [10, tD]}. Then, the liabilities and population
mass become non-constant for t < tD + t̂. In Figure 7a, we observe that the liabilities are
decreasing ϐirst, because old people pass away, but at a certain point in time the liabilities
start increasing, since participation increases again. After tD years, the liabilities converge
to a constant level, i.e. full participation. Figure 7b shows themass of retirees and themass
of working agents over time, which are also converged after tD years.

At time t = t̂, the youngest participant has the age of q. In order to determine the
participation threshold of this generation, we need to apply the LSMC method again as
explained in Section 5. First, we derive the “in the money” funding rates, which are the
funding rates where stopping is more beneϐicial than continuing in case this is the ϐinal
decision date. These new “in themoney” thresholds are shown in Figure 7d (dashed line).
Then, by applying our approximationmethod, we obtain the value of participation for dif-
ferent funding rates, as shown in Figure 7c. The participation threshold for generation q
at time t = t̂ is obtained at 83.89%. Figure 7d provides the participation thresholds over
lifetime of the generation with age q at time t = t̂ (solid line).

There are two forces affecting the contribution rate and participation thresholds. First,
the contribution rate becomes larger when working cohorts leave the collective scheme
and, hence, participation thresholds increase. Second, liabilities decrease for about tR − q

periods, which results in lower contribution rates and participation thresholds. In Figure
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(d) Participation thresholds over remaining life for
generation with age q.
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(e) Participation thresholds over remaining life for
generationwith age q before and after outϐlowof par-
ticipants.
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(f) Participation thresholds for generations older
than q before and after outϐlow of participants.

Figure 7: Future liabilities, population mass and participation thresholds when agents
younger than q = 10 do not participate at time t = t̂.
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7e and 7f, we compare the new thresholds, after the departure of generations up to age
q, to the old situation with full participation. Figure 7e shows the thresholds of a parti-
cipant with age q over his remaining lifetime, while Figure 7f shows the thresholds for
different generations at time t = t̂. From Figure 7e we can conclude that the participation
thresholds for generation with age q = 10 have not changed much for the next 5 years.
Similarly, for slightly older generations, the thresholds have not changed much either, as
shown in Figure 7f. Only for ages above 15, we observe an increase in the participation
thresholds, which basically means that their value of participation has decreased as a res-
ult of generations younger than q having left the system causing an increase in the uniform
contribution rate. Furthermore, we can say that for ages between q = 10 and 15, the imme-
diate increase in contributions and the forthcoming decrease in liabilities roughly cancel
out each other.

For the results above we considered q = 10, while the dashed line in Figure 8 shows
the participation thresholds of the youngest generation when cohorts up to age q leave
the pension fund. Hence, the youngest generation still participating is the generationwith
age q. The threshold of the youngest generation is typically around 84%when cohorts up
to age q = 30 have left the pension fund. However, when older generations exercise the
option as well, the contribution burden on the remaining participants becomes so large
that their participation threshold substantially increases.

The solid line in Figure 8 are the thresholds under the full participation setting as ob-
tained earlier. The lines start at the same point at age q = 0, since this point represents
the entry threshold under full participation in both cases. Starting from this point, the
solid line slightly increases. The reason is that the agent has zero pension entitlements at
age q = 0 and, hence, he would not lose much by exercising the option shortly thereafter.
This is not the case at later ages, since the positive amount of accumulated pension enti-
tlements is multiplied by the funding rate when exercising the option. Hence, participants
are more willing to give up their exiting option at entry, resulting in a lower participa-
tion threshold than at slightly older ages. After a few years, the effect that the uniform
contribution rate is more beneϐicial for older participants starts to dominate. Hence, the
participation threshold is decreasing in age over the remaining life, and the solid line in
Figure 8 crosses the dashed line exactly once at a threshold of 83.79% and age 11.5.

We can consider two scenarios. First, when the funding rate falls between 83.79%and
Γ0 = 84.41%, which is the funding rate threshold of an entry generation as we have ob-
tained in Step 7 of Section 5, then some young generations will leave, but the collective
pension scheme can continue thereafter with the remaining participants. Second, when
the funding rate falls below 83.79%, young people exercise the option up to a certain age
q > 11.5. As a result, the thresholds of older generations increase and, therefore, they
prefer to leave the collective scheme as well. In order to better understand the latter fea-
ture, consider a fall in the funding rate to 79.09%. Then, it is optimal for all participants up
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Figure 8: Participation thresholds under full participation and after outϐlow of young gen-
erations. The solid line represents the participation thresholds under full participation
as a function of age. The dashed line represents the thresholds of the youngest parti-
cipating generation as a function of age. Under the latter, the participation setting is
I = {s : s ∈ [q, tD]}, where q is the age of youngest participant. For funding rates forwhich
the solid line lies below the dashed line, which is the case for thresholds below 83.79%, the
initial outϐlow of young cohorts causes an outϐlow of all other working cohorts.

to age 20 to exercise the option – see the solid line in Figure 8. As a result, the thresholds
of the remaining participants change. In particular, the new threshold of the youngest
generation (with age 20) increases from 79.09% (the point on the solid line in Figure 8 at
age 20) to 83.31% (the point on the dashed line in Figure 8 at age 20). This way, it has
become optimal for this speciϐic cohort to leave as well. Then, a slightly older generation
becomes the youngest generation for which the participation threshold is even higher,
since the dashed line in Figure 8 is increasing. In other words, a chain reaction of cohorts
exercising the option occurs and the collective system collapses.

To conclude, the contribution rate goes up as a result of generations leaving the col-
lective scheme, but starts decreasing thereafter because the liabilities decrease as well.
When the negative shock is small causing only a small group to leave, the pension system
can continue with the remaining participants. In case the negative shock is large causing
a large group to leave, then this results in a chain reaction of other cohorts leaving as well.
This way, the system breaks down and everybody gets the present value of their pension
rights multiplied by the funding rate.
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(a) Age of youngest generation is q: participation set-
ting I = {s : s ∈ [q, tD]}.
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(b)Ageof oldest generation is q: participation setting
I = {s : s ∈ [0, q]}.

Figure9: Participation thresholds for entry generationswhen there is no full participation.

7 Entry Generations

This section investigates to what extent generations are willing to participate when exist-
ing participation is not full.

In case the current funding rate is between 83.8% and 84.4%, there are some genera-
tions leaving, but the system does not break down. However, we still need to test whether
new participants would be willing to enter the pension scheme at the start of their career
in case of no full participation.

Suppose the current participation setting is I0 = {s : s ∈ [q, tD]}, which means that
the youngest participant is q years old and everybody older than q participates as well.
We have obtained that for q = 0, the participation threshold of an entry generation is
84.4%. For larger values of q, the thresholds for entry generations are shown in Figure 9a,
where we observe that the thresholds are fairly stable up to q = 30, but sharply increase
when the current youngest participant of the pension fund is older than 30. As we have
seen above, the system breaks down for q > 11.5, so the interesting part is q < 11.5. For
this region, the collective pension fund will attract young cohorts again, when the funding
rate recovers to 84.4% or higher.

After a breakdown of the collective system, cohorts can start a new collective pension
scheme again, when they enter the labour force. Suppose the current participation setting
is I0 = {s : s ∈ [0, q]}, which means that the oldest participating cohort is q years old.
Figure 9b shows these participation thresholds for entry generations. Full participation
holds for q = tD with corresponding threshold 84.4%. When the oldest generation is
younger, the collective pension scheme becomes more attractive for entry generations,
which is translated into lower participation thresholds. This is shown in Figure 9b, where
the thresholds are particularly lowerwhen the oldest generation is younger than 20 years.
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From these results we can conclude that entrance is more attractive when the exist-
ing participants are relatively young on average and vice versa when they are relatively
old. Old generations have large liabilities associated with them, while they are expected
to make little or no contributions any more. Hence, when the existing participants are re-
latively young on average, the build up of a new collective scheme after a break down is
easier than under a full participation setting.

8 Break Down Distributions

Figure 10 shows 90% conϐidence intervals for the funding rate and the contribution rate
given that the system converges towards a full participation setting. The system starts
with a funding rate of F̄ = 100%. We consider three different participation settings I0
at time t = 0. The participation setting does not affect the funding rate distributions as
shown in the left panels of the ϐigure. This is clearly not the case for the contribution
rates. Regulation requires the funding rate to converge in expectation to its target level
by adjusting contributions. The spread in the contribution rate is less when pension fund
participants are relatively young. Under a relatively old participation setting, however,
liabilities are large which requires a similar amount of assets to fulϐil the funding rate re-
quirements. Larger ϐluctuations in contributions are needed to close a given gap with the
target funding rate.

From the three panels with the funding rate distributions we observe that 5% of the
funding rate simulations are below 81%, which is lower than the break down threshold
of 83.8% as we have found in Section 6. Figure 11 shows the frequency distribution of
the number of years until breakdown for initial funding rates of F0 = 100% (left panels)
and F0 = 150%(right panels). From the cumulative distributions (bottom panels), we ob-
serve that the probability of the pension scheme surviving at least 10 years is only 21.5%
and 32.5% for a starting funding rate of F0 = 100%and F0 = 150%, respectively. Further-
more, a 90%survival certainty holds only for 0.9 and 2.9 years for the two starting funding
rates, respectively. Hence, a collapse of the system would be frequently observed under
the benchmark parameter settings.

Threshold breakdown rates for a variety of values of the smoothing parameter α and
the parameter for the portfolio risk σ are shown in Figure 12.2 The breakdown threshold
decreases for a longer recovery window and for higher investment risk. However, these
parameter changes also raise the funding rate volatility. From the statistics shown in the
middle and bottom panels of Figure 12, we observe that a break down occurs less fre-
quently when the recovery window increases. Increasing investment risk does not have a
large impact on the stability of the collective pension scheme. It is only detrimental when

2More general results are shown in Appendix B, where we present the ϐigures of funding rate equilibria
and break down distributions for the different parameter choices α and σ.
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(c) Funding rate distribution with full participation
I0 = {s : s ∈ [0, tD]} .
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(d) Contribution rate distribution with full particip-
ation I0 = {s : s ∈ [0, tD]} .

0 10 20 30 40 50 60
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

F
un

di
ng

 r
at

e

Time

 

 

mean
90%−CI

(e) Funding rate distribution with participation set-
ting I0 =

{
s : s ∈

[
1
2 tD, tD

]}
.

0 10 20 30 40 50 60
−4

−3

−2

−1

0

1

2

3

4

C
on

tr
ib

ut
io

n 
ra

te

Time

 

 

mean
90%−CI

(f) Contribution rate distribution with participation
setting I0 =

{
s : s ∈

[
1
2 tD, tD

]}
.

Figure 10: Distributions of the funding rate (left panels) and contribution rate (right pan-
els) under different participation settings I0 at time t = 0.
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F0 = 150%.
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(c) Cumulative distribution with starting funding
rate F0 = 100%.
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Figure 11: Distributions of a break down.
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Figure 12: Break down level and probabilities for different levels of smoothingα (left pan-
els) and different levels of investment risk σ (right panels).

investment risk is particularly low, say σ < 10%.

9 Conclusion

We have explored the sustainability of a DB pension fund when its participants possess
the option to leave the pension fund in favour of participation in an individual DC funded
pension scheme. We paid particular attention to the case in which this option was of the
American type. Using relevant option pricing valuation techniques, we obtained a number
of interesting insights. First, young generations have a relatively strong incentive to exer-
cise their option to quit the DB fund. Second, entrance funding rate thresholds become
lower when the number of exercise dates of the Bermudan option increases. Third, when
a small negative shock hits the funding rate, some young cohorts exercise their option and
the collective pension scheme continues with the remaining generations. However, when
the negative shock is large, the number of young generations leaving the pension fund is
so large that also the other generations prefer to quit the pension fund. Hence, the pen-
sion fund unravels with all remaining generations exercising their option. Finally, we have
found that the participation thresholds of new cohorts of workers become lower when in-
vestment risks are larger and the recovery window is longer. However, the changes in
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the underlying parameters also raise the funding rate volatility. The system survives the
coming 10 years with less than 40% certainty, while all participants will have exercised
the option almost surely after 20 to 40 years, depending on the parameter settings. Hence,
in the absence of mandatory participation, it is only a matter of time before the collective
pension scheme collapses.

The latter result raises several questions about the structure of a collective pension
scheme without mandatory participation. Since young generations are typically more in-
clined to leave, this is an argument for limiting their contribution to stabilising the funding
rate. This yields some interesting implications about intergenerational risk-sharing and
pension system design, which we leave for future research.

The model can also be extended into a variety of directions, for example by model-
ling the collective pension scheme as a hybrid plan with both DB and DC elements. Fur-
thermore, the LSMC approach is particularly powerful for valuing options that depend on
multiple factors. Hence, an interesting enrichment of the setting would be to allow for ad-
ditional sources of risk, such as demographic, interest rate and wage risks. However, not
all types of risks are hedgeable, which contradicts the assumption ofmarket completeness
and, as a result, makes the risk-neutral pricing approach inapplicable. Hence, an interest-
ing extension would be to apply utility indifference pricing, whereby a reasonable set of
option prices can be obtained, according to a variety of risk preferences.
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A Derivations

A.1 Regulation Policy

Suppose n ∈ N. Then, we can use Eq. (1) and the law of iterated expectations to derive:
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A.2 Contribution Rate

Rewriting Eq. (1) yields:
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where, going from the ϐirst to the second line, we have used the independence of the
change in assets from the change in liabilities conditional on period t information, and,
going from the next-next-to-last to the next-to-last line, we have used that dt ↓ 0 as well
as l’Hôpital’s rule to get αdt−1

dt
= limx↓0

αx−1
x

= logα.
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A.3 Discounted Funding Rates

We can use the result from Appendix A.1 to derive the following expression:
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satisϐies theMarkov property, as its value is only depend-

ent on time u’s funding rate (Fu).

A.4 Eq. (2)
Under full participation we have thatmw

t = tR,mr
t = (tD − tR), dLt = 0 andLt = L̄, so we

can write:
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From Appendix A.3 we obtain
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For an entry generation the DB pension scheme is attractive when discounted beneϐits
exceed expected discounted contributions, which we can rewrite using our derivations
above as follows:
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Note that (logα) < 0, since α ∈ (0, 1) and, therefore, r − (logα) > 0.
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A.5 Proof for ceq ≥ cac

Proof. Suppose F̄ = 1, tR > 0 and r > 0. Then, the actuarially fair contribution rate (cac)
is obtained by:

EQ
0

[∫ tR

0

cac exp (−rs) ds
]
= exp (−rtR)ΠtR (BtR)

⇐⇒ cac
∫ tR

0

exp (−rs) ds = exp (−rtR)RtRBtR

⇐⇒ cac
1

r
[1− exp (−rtR)] = exp (−rtR)RtRtRψ

⇐⇒ cac =rtRψRtR

exp (−rtR)
1− exp (−rtR)

⇐⇒ cac =tRψ
exp (−rtR)− exp (−rtD)

1− exp (−rtR)
.

The contribution rate of the collective pension scheme is given by

ct =
1

mw
t

[
(logα)

(
At − F̄Lt

)
+ FtE

Q
t

(
dLt

dt

)
− rAt +mr

tBtR

]
.

In equilibrium we have that mw
t = tR, mr

t = tD − tR, Ft = F̄ = 1, dLt = 0 and Lt = L̄.
Hence, the equilibrium contribution rate (ceq) is obtained by:

ceq =
1

tR

[
(logα)

(
F̄ L̄− F̄ L̄

)
+ F̄EQ

t

(
0

dt

)
− rF̄ L̄+ (tD − tR)BtR

]
=
(tD − tR)BtR − rL̄

tR

=(tD − tR)ψ − rL̄

tR
.
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Furthermore, we can write the liabilities as:

L̄ =

∫ tD

0

RsBsds

=

∫ tD

0

1

r
exp {−r [tR −min (tR, s)]} (1− exp {−r [tD −max (tR, s)]})ψmin (s, tR) ds

=
ψ

r

(
{1− exp [r (tR − tD)]}

∫ tR

0

s exp [r (s− tR)] ds+ tR

∫ tD

tR

{1− exp [r (s− tD)]} ds
)

=
ψ

r
{1− exp [r (tR − tD)]} exp (−rtR)

∫ tR

0

s exp (rs) ds+ . . .

. . .
ψ

r
tR

{
tD − tR − exp (−rtD)

∫ tD

tR

exp (rs) ds
}

=
ψ

r
{1− exp [r (tR − tD)]} exp (−rtR)

1

r2
[(rtR − 1) exp (rtR) + 1] + . . .

. . .
ψ

r
tR

(
tD − tR − 1

r
{1− exp [−r (tD − tR)]} ds

)
=
ψ

r
{1− exp [r (tR − tD)]}

1

r2
[rtR − 1 + exp (−rtR)] + . . .

. . .
ψ

r
tR

(
tD − tR +

1

r
{exp [−r (tD − tR)]− 1} ds

)
,

whereby we used:∫ tR

0

s exp (rs) ds = 1

r2
[(rtR − 1) exp (rtR) + 1] .

Then, we can rewrite the equilibrium contribution rate as follows:

ceq =(tD − tR)ψ − ψ {1− exp [r (tR − tD)]}
1

r2

{
r +

1

tR
[exp (−rtR)− 1]

}
− . . .

. . .ψ

(
tD − tR +

1

r
{exp [r (tR − tD)]− 1}

)
=
ψ

r

(
{1− exp [r (tR − tD)]}

{
1

rtR
[1− exp (−rtR)]− 1

}
+ {1− exp [r (tR − tD)]}

)
=

ψ

r2tR
{1− exp [r (tR − tD)]} [1− exp (−rtR)]

=
ψ

r2tR
{1− exp [−r (tD − tR)]− exp (−rtR) + exp (−rtD)} .
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This way, we get:

0 <ceq − cac

⇐⇒ 0 <
ψ

r2tR
{1− exp [−r (tD − tR)]− exp (−rtR) + exp (−rtD)} − tRψ

exp (−rtR)− exp (−rtD)

1− exp (−rtR)

⇐⇒ 0 <1− exp [−r (tD − tR)]− exp (−rtR) + exp (−rtD)− (rtR)
2 exp (−rtR)− exp (−rtD)

1− exp (−rtR)
⇐⇒ 0 < [1− exp (−rtR)] [1− exp [−r (tD − tR)]− exp (−rtR) + exp (−rtD)]− (rtR)

2
[exp (−rtR)− exp (−rtD)]

⇐⇒ 0 <1− exp [−r (tD − tR)] + exp (−2rtR)− exp [−r (tD + tR)] +
[
2 + (rtR)

2
]
[exp (−rtD)− exp (−rtR)]

⇐⇒ 0 < [exp (−rtR)− exp (−rtD)] [exp (−rtR) + exp (rtR)] +
[
2 + (rtR)

2
]
[exp (−rtD)− exp (−rtR)]

⇐⇒ 0 < exp (−rtR) + exp (rtR)− 2− (rtR)
2
.

This holds for all r > 0 and tR > 0, which is shown below.
If we take r = 0, then exp (−rtR) + exp (rtR)− 2− (rtR)

2 = 0. Furthermore:

∂
(
exp (−rtR) + exp (rtR)− 2− (rtR)

2)
∂r

=tR [exp (rtR)− exp (−rtR)− 2rtR]

for r = 0 : tR [exp (rtR)− exp (−rtR)− 2rtR] = 0

∂2
(
exp (−rtR) + exp (rtR)− 2− (rtR)

2)
∂r2

=t2R [exp (rtR) + exp (−rtR)− 2]

for r = 0 : t2R [exp (rtR) + exp (−rtR)− 2] = 0

∂3
(
exp (−rtR) + exp (rtR)− 2− (rtR)

2)
∂r3

=t3R [exp (rtR)− exp (−rtR)]

for r = 0 : t3R [exp (rtR)− exp (−rtR)] = 0

∂4
(
exp (−rtR) + exp (rtR)− 2− (rtR)

2)
∂r4

=t4R [exp (rtR) + exp (−rtR)] > 0 for r, tR > 0.

Hence, exp (−rtR)+exp (rtR)−2−(rtR)
2 is zero for r = 0 and increasing in r for r, tR > 0.

Similarly, we can show that exp (−rtR) + exp (rtR) − 2 − (rtR)
2 is zero for tR = 0 and

increasing in tR for r, tR > 0. This proves that:

0 <r, tR

=⇒ 0 < exp (−rtR) + exp (rtR)− 2− (rtR)
2

⇐⇒ cac <ceq.
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A.6 Value of Continuation Linearly Increasing in Ft

Under full participation we have thatmw
t = tR,mr

t = (tD − tR), dLt = 0 andLt = L̄, so we
can write the contribution rate as:

ct =
1

tR

[
(logα)

(
At − F̄ L̄

)
− rAt + (tD − tR)BtR

]
.

Then, we can write the value of continuation as:

ConttM = exp [−r (tR − tM )] ΠtR (BtR)− EQ
tM

{∫ tR

tM

cs exp [−r (s− tM )] ds

}
= exp [−r (tR − tM )] ΠtR (BtR)− . . .

. . .EQ
tM

{∫ tR

tM

1

tR

[
(logα)

(
As − F̄ L̄

)
− rAs + (tD − tR)BtR

]
exp [−r (s− tM )] ds

}
= exp [−r (tR − tM )] ΠtR (BtR) + . . .

. . .
exp (rtM )

tR
EQ

tM

[∫ tR

tM

{
[r − (logα)]As + (logα) F̄ L̄− (tD − tR)BtR

}
exp (−rs) ds

]
= exp [−r (tR − tM )] ΠtR (BtR) +

exp (rtM )
[
(logα) F̄ L̄− (tD − tR)BtR

]
tR

∫ tR

tM

exp (−rs) ds+ . . .

. . .
exp (rtM ) [r − (logα)]

tR
EQ

tM

[∫ tR

tM

As exp (−rs) ds
]

= exp [−r (tR − tM )] ΠtR (BtR) +

[
(logα) F̄ L̄− (tD − tR)BtR

]
{1− exp ([−r (tR − tM )])}

rtR
+ . . .

. . .
exp (rtM ) [r − (logα)] L̄

tR
EQ

tM

[∫ tR

tM

Fs exp (−rs) ds
]

From Appendix A.3 we obtain

EQ
tM

[∫ tR

tM

Fs exp (−rs) ds
]

=FtM

exp (−rtM)

r − (logα) (1− exp {(tR − tM) [(logα)− r]}) + . . .

. . .F̄

[exp (−rtM)− exp (−rtR)
r

− exp (−rtM)

r − (logα) (1− exp {(tR − tM) [(logα)− r]})
]
,
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which we can use to further rewrite the value of continuation as follows:

ConttM = exp [−r (tR − tM )] ΠtR (BtR) +

[
(logα) F̄ L̄− (tD − tR)BtR

]
{1− exp [−r (tR − tM )]}

rtR
+ . . .

. . .
L̄F̄

tR

{[
1− (logα)

r

]
{1− exp [−r (tR − tM )]}+ exp {− (tR − tM ) [r − (logα)]} − 1

}
+ . . .

. . .FtM

L̄

tR
(1− exp {− (tR − tM ) [r − (logα)]})

ConttM = exp [−r (tR − tM )] ΠtR (BtR)−
(tD − tR)BtR {1− exp [−r (tR − tM )]}

rtR
+ . . .

. . .
L̄F̄

tR
(exp {− (tR − tM ) [r − (logα)]} − exp [−r (tR − tM )]) + . . .

. . .FtM

L̄

tR
(1− exp {− (tR − tM ) [r − (logα)]})

∂ConttM
∂FtM

=
L̄

tR
(1− exp {− (tR − tM ) [r − (logα)]}) ,

which is constant and strictly positive. Hence, the valueof continuation at age tM is linearly
increasing in the funding rate FtM .

B Figures of Funding Rate Equilibria and Distributions

ThisAppendix presents the ϐigures of funding rate equilibria andbreakdowndistributions
for a variety of smoothing levels α and investment risk levels σ.
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(a) Equilibrium threshold for σ = 5%.
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(b) Equilibrium threshold for σ = 10%.
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(c) Probability distribution for σ = 5%.
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(d) Probability distribution for σ = 10%.
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(e) Cumulative distribution for σ = 5%.
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(f) Cumulative distribution for σ = 10%.

Figure 13: Equilibrium and distributions of a break down for different investment risk
levels σ.
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(a) Equilibrium threshold for σ = 20%.
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(b) Equilibrium threshold for σ = 25%.

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

Years until break down

P
ro

ba
bi

lit
y 

di
st

rib
ut

io
n

(c) Probability distribution for σ = 20%.
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(d) Probability distribution for σ = 25%.
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(e) Cumulative distribution for σ = 20%.

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Years until break down

(f) Cumulative distribution for σ = 25%.

Figure 14: Equilibrium and distributions of a break down for different investment risk
levels σ.
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(a) Equilibrium threshold for α = 0.1.
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(b) Equilibrium threshold for α = 0.3.
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(c) Probability distribution for α = 0.1.
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(d) Probability distribution for α = 0.3.
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(e) Cumulative distribution for α = 0.1.
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(f) Cumulative distribution for α = 0.3.

Figure 15: Equilibrium and distributions of a break down for different smoothing levels
α.
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(a) Equilibrium threshold for α = 0.7.
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(b) Equilibrium threshold for α = 0.9.
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(c) Probability distribution for α = 0.7.
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(d) Probability distribution for α = 0.9.
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(e) Cumulative distribution for α = 0.7.
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(f) Cumulative distribution for α = 0.9.

Figure 16: Equilibrium and distributions of a break down for different smoothing levels
α.
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