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- Abstract

Insurers and pension funds must value liabilities using mortality rates that
are appropriate for their portfolio. Current practice is to multiply available
projections of population mortality with portfolio-specific factors, which are
often determined using Generalised Linear Models. Alternatively, one of the
well-known stochastic mortality models can directly be applied to portfolio
data to construct portfolio-specific projections without the use of population
data. However, this requires a sufficiently large historical dataset for the
portfolio, which is often not available.

We overcome this problem by introducing a model to estimate portfolio-specific
mortality simultaneously with population mortality. We use a Bayesian frame-
work, which automatically generates the appropriate weighting of the limited
statistical information for a given portfolio and the more extensive informa-
tion that is available for the whole population. It also allows us to incorporate
parameter uncertainty when projecting portfolio-specific mortality rates.

We apply our method to a dataset of assured lives in England & Wales. We find
that uncertainty in portfolio-specific factors can be significant, and that con-
fidence intervals for portfolio-specific mortality projections are slightly wider
than those resulting from frequentist projections.

Key words: Bayesian analysis, portfolio-specific mortality, mortality experience, random

effects, smoothing prior, simultaneous modelling
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1 Introduction

Life insurers and pension funds need to value their liabilities using mortality rates appro-
priate for their portfolio. For many countries projections of mortality rates are available
for the entire population, but substantial heterogeneity in mortality rates exists between
individuals within a population which is caused amongst others by differences in so-
cioeconomic classes, see Villegas and Haberman (2014). Lantz et al. (1998) argue that
individuals with higher education tend to live more healthily which might explain these
differences in mortality.

Heterogeneity in mortality also exists between individuals with different motivation
for buying insurance: Finkelstein and Poterba (2002) show that differences in mortality
even exist between individuals with voluntary annuities, compulsory annuities or without
annuities. Pitacco et al. (2009) discusses the presence of select mortality. If individuals
are subject to medical selection when starting a life insurance policy, policyholders with
a longer duration since policy issue may experience higher mortality than policyholders
recently accepted. Therefore, an insurance company or pension fund generally can not
use population mortality rates without making any adjustments to the country-specific
mortality projections. Barrieu et al. (2012) define this as basis risk.

In current practice, portfolio-specific mortality rates are often constructed by multi-
plying projections of country-specific mortality rates with portfolio-specific factors. These
portfolio-specific factors, also called experience factors, represent the relative difference
between the mortality rates of the population and the portfolio under consideration. For
Solvency II insurance companies must derive portfolio-specific mortality rate projections
and analyse the uncertainty associated within these projections, and The Dutch Bank has
published a guideline on how pension funds in the Netherlands can derive their portfolio-
specific factors which are to be applied relative to population mortality projections, see
The Dutch Bank (2012).

Lee and Carter (1992) introduce the seminal stochastic mortality model known as the
Lee-Carter model. It is a single-factor model, meaning that there is one time series in-
volved. Many generalisations and extensions of the Lee-Carter model have been proposed
since then. Renshaw and Haberman (2006) introduce a cohort effect, Cairns et al. (2006)
introduce a two-factor model specifically designed for higher ages, and Plat (2009a) intro-
duces age-specific improvements. Extensions using information from other populations
are made by Li and Lee (2005), Dowd et al. (2011), Jarner and Kryger (2011) and Anto-
nio et al. (2015). Advantages of these multiple population models is that the inclusion of
mortality from other populations leads to a more stable mortality trend which results in
projections that are more robust with respect to the calibration period. In some countries
these multiple population models are now used for forecasting of population mortality,
see for example Koninklijk Actuarieel Genootschap (2014) and Institute of Actuaries in
Belgium (2015).

Multiple population models are also used for modelling portfolio-specific mortality. For
example, Cairns et al. (2011) use an age-period-cohort model in a Bayesian framework
with two populations of different size (e.g. a population and a large pension portfolio),
Villegas and Haberman (2014) model five different socioeconomic classes in England &
Wales relative to the total population of England & Wales, and Danesi et al. (2015) use a
multiple population approach to model mortality in different regions in Italy. Such models
can be used to obtain stochastic projections for the portfolio, but sufficient historical
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portfolio data is needed for plausible time series projections which is often not the case
for portfolios of pension funds and insurers.

Another stream of research puts focus on age-dependent relative factors with respect
to population mortality, which is assumed given or a deterministic baseline mortality rate
is estimated. Plat (2009b) determines the realised portfolio-specific factors and models
these directly with a linear regression model, whereas Gschlössl et al. (2011) and Olivieri
(2011) use a Poisson framework to model the number of deaths in an insured portfolio.
Tomas and Planchet (2013) also use a Poisson likelihood to model mortality of long-term
care claimants using duration-dependent factors. These models can be used to explain
historical portfolio mortality, but projections of portfolio-specific mortality rates that
include uncertainty both in the mortality trend and in the level cannot be obtained in a
natural way. Further, frailty models that use parametric mortality laws like Gompertz,
Makeham and variations thereof are investigated by Butt and Haberman (2004) and
Richards et al. (2013), but mortality projections can not be obtained using such frailty
models.

We propose a model to estimate population and portfolio-specific mortality simul-
taneously. To account for yearly fluctuations in small portfolios we use a Poissonian
likelihood assumption, as introduced by Brouhns et al. (2002). We view the portfolio
as part of the population and model a baseline mortality trend in the population. By
using a larger dataset for the population than we have available for the portfolio, we are
able to adequately estimate the dynamics of the mortality trend. The relative difference
between the population and the portfolio is modelled using a random effect. Such ran-
dom effects can be used to reflect remaining heterogeneity among policyholders which is
not captured by the observable risk factors. See Denuit et al. (2005) and Antonio and
Zhang (2014) for examples in pricing models for non-life insurance. We define the dif-
ference between the population and the portfolio as the ‘rest’, and use this to model the
total number of deaths in the population for each calendar year and each age. We use
the Lee-Carter model to estimate population mortality and approach this in a Bayesian
way. Age-dependent portfolio-specific factors are estimated relative to population mor-
tality. We consider two prior distributions for the portfolio-specific factors: a Gamma
prior which implies independence between different ages and portfolios (our portfolio
and the rest), and a logNormal prior which implies dependence between ages but inde-
pendence between portfolios. Through the Bayesian approach we can model population
and portfolio-specific mortality simultaneously in contrast to a multistep approach that
is often used in a frequentist approach. Further, the Bayesian approach provides insight
concerning the parameter uncertainty in the stochastic population mortality model, in the
time series model used in the stochastic population mortality model, and in the portfolio-
specific factors. As a result, we are able to project portfolio-specific mortality and assess
the uncertainty in these projections in a natural way.

Section 2 gives an overview of existing approaches to modelling portfolio-specific mor-
tality and introduces our model. In Section 3 we describe the prior distributions used in
our Bayesian setting, and in Section 4 we derive the posterior distributions of all parame-
ters. Section 5 contains an illustration of our proposed model using a dataset on assured
male lives from England & Wales, and Section 6 concludes.
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2 Bayesian portfolio-specific mortality

2.1 Literature overview

General population mortality. Let dt,x be the observed number of deaths in a pop-
ulation at age x in calendar year t, and let Et,x be the corresponding exposure. The

observed death rate is defined as mt,x = dt,x
Et,x

. Under the assumption of a constant force of

mortality µt,x on the interval [t, t+ 1)× [x, x+ 1), the maximum likelihood estimate µ̂t,x
of the force of mortality µt,x equals the observed death rate mt,x (Pitacco et al. (2009)).
The mortality rate qt,x is the probability that a person aged exactly x at the beginning of
calendar year t dies within the next year.

Lee and Carter (1992) introduce the seminal mortality model to explain observed death
rates. Their model contains a single period effect and is therefore called a single-factor
model:

lnmt,x = αx + βxκt + εt,x, εt,x
iid∼ (0, σ2). (1)

They estimate this model using a Singular Value Decomposition (SVD), and they model
the period effect κt using a random walk with drift to obtain mortality projections:

κt = κt−1 + δ + εt, εt
iid∼ N(0, σ2

ε). (2)

Brouhns et al. (2002) investigate this model in a Poisson framework, thereby accounting
for sampling randomness:

Dt,x ∼ Poisson(Et,xµt,x), with lnµt,x = αx + βxκt. (3)

For an overview of extensions to the Lee-Carter model in a single population setting,
we refer to Cairns et al. (2009), Haberman and Renshaw (2011) and van Berkum et al.
(2014).

Multiple population mortality models. Mortality developments in a single country
can be strongly time-varying. Periods of low mortality improvements may be followed
by periods of high mortality improvements. A rapidly changing mortality trend is com-
plicated to project. Therefore, extensions to the Lee-Carter model have been proposed
to incorporate information from different but comparable countries to estimate a more
stable, global mortality trend, which allows insight in country-specific deviations from
this trend. The approach of multiple population modelling has clear advantages, but a
disadvantage is that sufficient historical data is necessary to model the country-specific
deviations. If there is only limited historical data available for a portfolio, applying the
multiple population approach to portfolio data is less appropriate. Below we discuss some
approaches for multiple population modelling to illustrate ways to model a mortality trend
in a reference population.

Li and Lee (2005) investigate the augmented common factor model for multiple pop-
ulations (indexed by i)

lnmi
t,x = αix +BxKt + βixκ

i
t + εt,x,i, εt,x,i

iid∼ N(0, σ2
i ). (4)
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The term BxKt represents the common factor for the different countries considered, αix is
defined as the average mortality in country i over time, and the term βixκ

i
t is a country-

specific, age-dependent mortality development. Li and Lee (2005) estimate this model
using SVD, whereas Antonio et al. (2015) investigate this model and variations thereof
in a Bayesian setting with a Poissonian likelihood. These models are designed mainly
for simultaneous estimation of mortality in different countries, see Koninklijk Actuarieel
Genootschap (2014) and Institute of Actuaries in Belgium (2015).

Dowd et al. (2011) investigate mortality in two populations using a gravity model

lnmi
t,x = αix + κit + γit−x, i = 1, 2. (5)

The first population is defined as the dominant population and the second population
is of smaller size and is therefore considered to be the subordinate population. Dowd
et al. (2011) model the time series of the subordinate population as a spread relative to
the time series of the dominant population. Cairns et al. (2011) consider this model in
a Bayesian setting. By specifying the dependence between the two populations slightly
differently, their specification can be used for a combination of a dominant and subordinate
population and for a combination of two equal-sized populations. These models can for
example be used for mortality in different countries or for mortality in a country and in
a large pension fund.

Villegas and Haberman (2014) consider mortality of five different socioeconomic classes
in England. Mortality for the reference population is modelled using an extension of the
Lee-Carter model:

lnµt,x = αx + βxκt + γt−x. (6)

Mortality for socioeconomic class g is modelled relative to the population

ln nµt,x,g = ln nµt,x + αx,g + βxκt,g, (7)

where

nµt,x =
(∏n−1

i=0 µt,x+i

) 1
n (8)

is the geometric average of the forces of mortality in the reference population between
age x and age x+ n− 1. This model is specifically designed for subpopulations within a
larger population, where the larger population is for example a country.

Portfolio-specific mortality models. Alongside the multiple population approach,
other models have been suggested, which estimate portfolio-specific factors relative to a
population. In these models population mortality is often assumed given or a (smooth)
baseline mortality rate is estimated beforehand. These models can be used to explain
historical observations, but are less appropriate for projection purposes because popula-
tion and portfolio-specific mortality are not estimated simultaneously. Below we discuss
several approaches to modelling portfolio-specific factors. In Section 2.2 we combine these
ideas with the multiple population approach and introduce a new model to simultaneously
estimate population and portfolio-specific mortality.

Plat (2009b) focusses on realised portfolio-specific factors defined by

Pt,x =
qAt,x
qpop
t,x

, (9)
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Figure 1: Observed portfolio-specific factors computed as Θ̂pf
t,x = mpf

t,x/m
pop
t,x for the CMI

dataset on assured male lives in England & Wales (see Section 5). (Coloured ver-
sions of the figures can be found online.)

where qAt,x is the realised mortality rate in the portfolio based on insured amounts, and
qpop
t,x is the realised mortality rate in the population. Several models are suggested for

modelling the portfolio-specific factors Pt,x. As an example, Plat (2009b) estimates a
linear trend through ages on fourteen years of data

Pt,x = at + btx+ εt,x, εt,x
iid∼ N(0, σ2

ε). (10)

The parameters at and bt are estimated using regression techniques, and portfolio-specific
factors for future years are obtained by projecting at and bt using time series models.

Figure 1 shows observed portfolio-specific factors Θ̂pf
t,x (computed as mpf

t,x/m
pop
t,x ) for

the CMI dataset on assured lives in England & Wales (see Section 5). Within a calendar
year the observations are very volatile; these factors jump up and down from one age to
the other. This is not only uncertainty in the portfolio-specific factors, but also Poisson
or Binomial volatility from random deaths given a fixed mortality rate. In order to
appropriately model the volatility due to random deaths, we will directly model observed
deaths instead of observed portfolio-specific factors.

Using only five years of historical data, Gschlössl et al. (2011) do not include time
dynamics. First they estimate a baseline force of mortality on portfolio data for each age
using a smooth function of age. Remaining heterogeneity is then captured by observable
risk factors in a Poisson GLM framework.

Richards et al. (2013) model the force of mortality using a time-varying version of
the Makeham-Beard law and estimate the parameters on five years of historical portfolio
data on individual lives. Their model is designed for data on individual lives, and this
approach therefore can not be used when only aggregated portfolio data is available.

Olivieri (2011) considers a Bayesian setting of the form

Dt,x ∼ Poisson(Et,xq
∗
t,xZt,x), (11)

where q∗t,x is a best estimate mortality rate published by an independent institution,
and Zt,x ∼ Gamma(αt,x, βt,x) is a random adjustment to the best estimate mortality rate.
Starting with values for α0,x and β0,x, subsequent values of αt,x and βt,x can analytically be
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computed as new mortality observations becomes available since the Gamma distribution
is the conjugate of the Poisson distribution. Kan (2012) considers a similar framework,
but estimates a population mortality using the Lee-Carter model on population mortality
data.

2.2 Model formulation, likelihood specification and parameter
constraints

As Section 2.1 illustrates, different approaches to modelling portfolio-specific factors exist,
each approach suitable for different types of datasets. We consider the situation where
only limited historical portfolio data is available which hinders reliable estimation of a
mortality trend in the portfolio. To obtain projections of mortality rates specific to a
portfolio, we model portfolio-specific factors relative to population mortality, and we use
the Lee-Carter model to project population mortality. This way, we ensure the portfolio-
specific factors are consistent with population mortality projections.

Mortality observations. Let the number of deaths for group i during calendar year
t aged x at death be dit,x, and the exposure for group i aged x during calendar year
t be Ei

t,x. We consider the entire population of a country (‘pop’), the portfolio under
investigation (‘pf’), and the difference between the entire population and the portfolio
under consideration (hereafter referred to as the ‘rest’), thus i ∈ {pop, pf, rest}. We
assume that the observed portfolio and the rest sum to the total population: dpf

t,x+drest
t,x =

dpop
t,x and Epf

t,x + Erest
t,x = Epop

t,x . We need to define the rest to ensure we consider all
information available in the population.

To estimate parameters in our model, we extend the dataset with observations of the
total population. As such, we obtain a larger dataset which enables the simultaneous
estimation of population mortality and portfolio-specific mortality. We define the set of
cells (t, x) for which we have observations about both our portfolio and the rest as Opf

(the red cells in Figure 2), and as a result we can only measure the heterogeneity between
the portfolio and the rest on this set. The set for which we have observations about the
population but not separately about our portfolio and the rest is defined by Opop (the
green cells in Figure 2).

For the portfolio we have observations for (t, x) ∈ S ×Y with S = {s1, s1 + 1, . . . , sS}
and Y = {y1, y1 + 1 . . . , yY }. For the population we have observations for cells (t, x) ∈
T ×X with T = {t1, t1+1 . . . , tT} and X = {x1, x1+1 . . . , xX} with t1 ≤ s1 ≤ sS ≤ tT and
x1 ≤ y1 ≤ yY ≤ xX (see Figure 2), but we include only observations for the population
such that Opop ∩ Opf = ∅. In the dataset of the portfolio we have Y ages and S years,
whereas in the population we have X ages and T years. We introduce indicator variables
that are useful when working with likelihoods:

Ipf
t,x = Irest

t,x =

{
1 if (t, x) ∈ Opf

0 otherwise,
(12)

and

Ipop
t,x =

{
1 if (t, x) ∈ Opop

0 otherwise.
(13)
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Figure 2: Illustration of overlap between portfolio and population observations. (Coloured
versions of the figures can be found online.)

Model formulation and likelihood specification. We assume that all groups in the
population (our own portfolio and the rest) share a baseline force of mortality defined
by µt,x; we model this force of mortality using the Lee-Carter model as in Equation (3).
However, since there is heterogeneity between groups, mortality in a group will deviate
from the baseline force of mortality. This heterogeneity is captured by a random effect
that depends on age, and the effects are different for our own portfolio and for the rest.
The model is specified as:

Dpop
t,x |µt,x ∼ Poisson(Epop

t,x µt,x), for (t, x) ∈ Opop (14)

and

Dpf
t,x|(µt,x,Θpf

x ) ∼ Poisson(Epf
t,xµt,xΘ

pf
x ), for (t, x) ∈ Opf (15)

Drest
t,x |(µt,x,Θrest

x ) ∼ Poisson(Erest
t,x µt,xΘ

rest
x ), (16)

with

µt,x = exp[αx + βxκt]. (17)

By specifying the model this way, we include all deaths in the population for every cell
(t, x), either by directly modelling Dpop

t,x or by modelling both Dpf
t,x and Drest

t,x .
The (in)dependence assumptions are summarised as follows. All groups in a country

share a baseline force of mortality that is modelled by µt,x. The random effects Θi
x are in-

dependent between groups, but there might be dependence between ages. In Section 3 we
consider two prior specifications for Θi

x, a Gamma prior and a logNormal prior. The first
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implies independence between ages and between groups, the second implies dependence
between ages but independence between groups. Given the baseline force of mortality µt,x
and the portfolio-specific factors Θi

x the deaths are independent between ages, calendar
years and groups.

To project mortality into the future, we need to impose a time series model on the
period effect κt. Two time series specifications that are often used for projecting the
period effect in the Lee-Carter model are a trend stationary and a difference stationary
model1. As discussed in van Berkum et al. (2014) we believe a difference stationary model
to be more appropriate for modelling the period effect for a single country and that is
what we use in this paper. In the next section we describe the prior distributions that
we use for the parameters and hyperparameters to complete the Bayesian specification of
the model.

Parameter constraints. In a frequentist setting, parameter constraints are needed to
uniquely identify the Lee-Carter model. Linear transformations can be applied to the
parameters αx, βx and κt without changing the fitted mortality rates and thus without
changing the likelihood of the model.

We consider the model in a Bayesian framework which means that we approach all
parameters as random variables and specify a prior for them. Applying linear transfor-
mations to the parameters αx, βx and κt leads to a different joint posterior distribution
because the likelihood of the parameters given their prior distribution changes after a
transformation.

However, the prior distribution of the parameters has little effect on the posterior
distribution compared with the impact of the likelihood of the observations, and as a
result the MCMC procedure may not converge. To facilitate convergence in the Bayesian
setting, we apply two parameter constraints:

κt1 = 0 and |β|2 =
∑
x∈X

β2
x = 1. (18)

The first constraint is applied through the model specification of the time series by fixing
the starting point of the time series. Applying the second constraint can not be performed
without changing the likelihood of the data, but Bafumi et al. (2005) suggest normalising
parameters after estimation is completed. Therefore, we normalise the βx’s after all
simulations have been performed and we apply corresponding transformations to the κt’s
and the hyperparameters δ and σ2

ε to ensure the posterior distribution of κt does not
change.

3 Prior distributions

3.1 Age parameters for population mortality

Following Czado et al. (2005) and Antonio et al. (2015) we use the following prior for αx:

ex = exp(αx)
iid∼ Gamma(ax, bx). (19)

1 The difference stationary model is also known as a random walk (possibly with a drift).
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Our prior distribution for βx is inspired by Antonio et al. (2015):

βx
iid∼ N(µβ, σ

2
β). (20)

However, we assume the mean of the βx’s is a hyperparameter with the following prior

µβ ∼ N(νβ, c
2
β). (21)

For variance hyperparameters, Gelman (2006) suggests using a Uniform(0, A) prior on σ
instead of an Inverse-Gamma(ε, ε) prior on σ2, because if the estimate of σ is close to zero,
the posterior density will be sensitive to the choice of ε. Therefore, we use the following
prior for the variance hyperparameter:

σβ ∼ Uniform(0, Aβ), (22)

which implies

fσ2
β
(σ2) ∝ σ−1 for 0 ≤ σ2 ≤ A2

β (23)

= σ−1 · 1[0≤σ≤Aβ ].

3.2 Period parameters for population mortality

In line with van Berkum et al. (2014) we consider a random walk with drift for the period
effect κt. The prior distribution is specified by

κt = κt−1 + δ + εt, with κt1 = 0 and εt
iid∼ N(0, σ2

ε) for t > t1. (24)

For the hyperparameter δ we use the prior

δ ∼ N(µδ, σ
2
δ ), (25)

and for the hyperparameter σ2
ε we use the prior

σε ∼ Uniform(0, Aε). (26)

3.3 Portfolio-specific mortality

The portfolio-specific factors Θi
x represent the relative difference between mortality in the

population and in group i with i ∈ {pf, rest}. We do not want to make prior assumptions
on whether mortality in a group is higher or lower than in the population. Therefore,
we choose our prior distribution such that E(Θi

x) = 1 (∀x, ∀i). We consider two prior
distributions for Θi

x, a Gamma prior and a lognormal prior.

Gamma prior The Gamma prior on the age-dependent factors for group i is given by

Θi
x ∼ Gamma(cix, c

i
x), for y1 ≤ x ≤ yY . (27)

The resulting age-dependent and group-specific factors are independent over ages x and
between groups i. By choosing equal parameters for the Gamma distribution we ensure
E(Θi

x) = 1 (∀x,∀i), and the variance of the prior distribution can be set by choosing cix
accordingly.
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Lognormal prior The lognormal prior on the age-dependent factors for group i is given
by

ln Θi
x = µi + ρi ln Θi

x−1 + ηix, with ηix
iid∼ N(0, σ2

i (1− ρ2
i )) for y1 < x ≤ yY , (28)

and ln Θi
y1

iid∼ N(−1
2
σ2
i , σ

2
i ),

where ln Θi
y1

and ηix are independent. This process is a mean reverting process over the
log of the group-specific factors, through which we achieve dependence between group-
specific mortality factors over ages x, but not between groups i. The mean parameter
to which the factors revert is defined as µi = −1

2
(1 − ρi)σ2

i ; choosing it as such ensures
E(Θi

x) = 1 (∀x,∀i), see Purcaru et al. (2004).
Define Θi = {Θi

y1
, . . . ,Θi

yY
}. The mean reverting process on the log of the portfolio-

specific factors can also be written as a multivariate logNormal distribution (Purcaru
et al., 2004, Section 3.3.2)

Θi ∼ logNormal(µ̃i,Σi), (29)

with µ̃i = −1
2
σ2
i 1Y and (Σi)xy = ρ

|x−y|
i σ2

i . For the variance hyperparameter we use the
prior

σi ∼ Uniform(0, Ai), (30)

and for the mean reversion parameter we use the prior

logit (ρi) ∼ N(µρi , σ
2
ρi

). (31)

Using this logit prior assumption ensures a mean reversion parameter in the interval (0, 1).

4 Posterior distributions

We derive the posterior distribution for all parameters in the model. For convenience, we
define the following variables

D = {Dpop,Dpf,Drest}, E = {Epop,Epf,Erest},
α = {αx1 , . . . , αxX}, β = {βx1 , . . . , βxX}, κ = {κt1 , . . . , κtT },
Θ = {Θpf,Θrest}, ρθ = {ρpf, ρrest}, σ2

θ = {σ2
pf, σ

2
rest}.

We further define the set Λ that contains both data and parameters:

Λ = {D,E,α,β, µβ, σ2
β,κ, δ, σ

2
ε ,Θ, (. . .)}, (32)

where the term between brackets is empty in case of a Gamma prior on the portfolio-
specific factors, and it is {ρθ,σ2

θ} for the logNormal prior.
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4.1 Age parameters for population mortality

4.1.1 Gibbs sampling for αx

Since the individual αx’s are independent, we derive the posterior for a single ex(=
exp(αx)) and x1 ≤ x ≤ xX as follows:

f(ex|Λ\{ex}) ∝ f(D|E, e,β,κ,Θpf,Θrest)f(ex) (33)

∝
∏
t∈T

(
e−E

pf
t,xex exp[βxκt]Θ

pf
x

(Epf
t,xex exp[βxκt]Θ

pf
x )

D
pf
t,x

Dpf
t,x!

)Ipft,x

×
∏
t∈T

(
e−E

rest
t,x ex exp[βxκt]Θrest

x
(Erest
t,x ex exp[βxκt]Θrest

x )
Drest
t,x

Drest
t,x !

)Irestt,x

×
∏
t∈T

(
e−E

pop
t,x ex exp[βxκt] (Epop

t,x ex exp[βxκt])
D

pop
t,x

Dpop
t,x !

)Ipopt,x

× baxx
Γ(ax)

eax−1
x exp[−bxex]

∝ exp[−(bx + dx)ex] · eax+D•x−1
x ,

with

dx =
∑
t∈T

{
Ipf
t,x

(
Epf
t,x exp[βxκt]Θ

pf
x

)
+ Irest

t,x

(
Erest
t,x exp[βxκt]Θ

rest
x

)
+ Ipop

t,x

(
Epop
t,x exp[βxκt]

)}
and

D•x =
∑
t∈T

{
Ipf
t,x ·Dpf

t,x + Irest
t,x ·Drest

t,x + Ipop
t,x ·Dpop

t,x

}
=
∑
t∈T

Dpop
t,x .

The last line in (33) is proportional to a Gamma(ax+D•x, bx+dx) distribution. Therefore,
we can use direct Gibbs sampling to draw a new value of ex which can be transformed
into a new value of αx.

4.1.2 Metropolis sampling for βx

Since the individual βx’s are independent, we derive the posterior for a single βx and
x1 ≤ x ≤ xX as follows

f(βx|Λ\{βx}) ∝ f(D|E,α,β,κ,Θpf,Θrest, µβ, σ
2
β)f(β|µβ, σ2

β) (34)

∝
∏
t∈T

[
exp

(
−Epf

t,x exp[αx + βxκt]Θ
pf
x

)
exp

(
Dpf
t,xβxκt

)]Ipft,x
×
∏
t∈T

[
exp

(
−Erest

t,x exp[αx + βxκt]Θ
rest
x

)
exp

(
Drest
t,x βxκt

)]Irestt,x

×
∏
t∈T

[
exp

(
−Epop

t,x exp[αx + βxκt]
)

exp
(
Dpop
t,x βxκt

)]Ipopt,x

× f(βx|µβ, σ2
β).

12



We cannot use Gibbs sampling here, thus we resort to Metropolis sampling. Given a
current value β̃x and Metropolis sampling variance s2

βx
, we draw a candidate β̂x from

the candidate distribution N(β̃x, s
2
βx

). The candidate distribution is symmetric and the
acceptance probability is thus given by

φ = min

{
f(β̂x|Λ\{β̂x})
f(β̃x|Λ\{β̃x})

; 1

}
.

4.1.3 Gibbs sampling for µβ

The posterior density of µβ is given by

f(µβ|Λ\{µβ}) ∝ f(β|µβ, σ2
β)f(µβ) (35)

∝ exp

[
−
∑
x∈X

(βx − µβ)2

2σ2
β

]
· exp

[
−(µβ − νβ)2

2c2
β

]

∝ exp

[
− 1

2dβ

(
µ2
β − 2µβeβ

)]
,

with

dβ =
σ2
β

X + σ2
β/c

2
β

and eβ =
X

X + σ2
β/c

2
β

· 1

X

∑
x∈X

βx +
σ2
β/c

2
β

X + σ2
β/c

2
β

· νβ.

The last line in (35) is proportional to a Normal distribution, so we can use Gibbs sampling
to obtain a new value for µβ from the distribution N(eβ, dβ).

4.1.4 Gibbs sampling for σ2
β

The posterior of σ2
β is given by

f(σ2
β|Λ\{σ2

β}) ∝ f(β|µβ, σ2
β)f(σ2

β) (36)

=
1

(2π)X/2(σ2
β)X/2

· exp

[
−
∑
x∈X

(βx − µβ)2

2σ2
β

]
× σ−1

β · 1[0≤σβ≤Aβ ]

∝ (σ−2
β )

X+1
2 · exp

[
−(σ−2

β ) · 1

2

∑
x∈X

(βx − µβ)2

]
.

Therefore, we know that the posterior of its reciprocal value, σ−2
β , is

f(σ−2
β |Λ\{σ2

β}) ∼ Gamma

(
X − 1

2
,
1

2

∑
x∈X

(βx − µβ)2

)
,

and we can use Gibbs sampling to draw a new value of σ−2
β which can be transformed to

σ2
β.

13



4.2 Period parameters for population mortality

4.2.1 Metropolis sampling for κt

Define κ−t = {κt1 , . . . , κt−1, κt+1, . . . , κtT }. The posterior distribution of κt for t1 < t ≤ tT
is given by

f(κt|Λ\{κt}) ∝ f(D|E,α,β,κ,Θpf,Θrest)f(κ|κt1 , δ, σ2
ε) (37)

∝
∏
x∈X

[
exp

(
−Epf

t,x exp[αx + βxκt]Θ
pf
x

)
exp

(
Dpf
t,xβxκt

)]Ipft,x
×
∏
x∈X

[
exp

(
−Erest

t,x exp[αx + βxκt]Θ
rest
x

)
exp

(
Drest
t,x βxκt

)]Irestt,x

×
∏
x∈X

[
exp

(
−Epop

t,x exp[αx + βxκt]
)

exp
(
Dpop
t,x βxκt

)]Ipopt,x

× f(κt|κ−t, δ, σ2
ε).

The expression in the last line can be simplified:

• for t1 < t < tT :

f(κt|κ−t, δ, σ2
ε) ∝ f(κt|κt−1, δ, σ

2
ε)f(κt+1|κt, δ, σ2

ε)

∼ N
(

1
2
(κt−1 + κt+1), 1

2
σ2
ε

)
,

• for t = tT :

f(κt|κ−t, δ, σ2
ε) ∝ f(κt|κt−1, δ, σ

2
ε)

∼ N
(
κt−1 + δ, σ2

ε

)
.

Given a current value κ̃t and Metropolis sampling variance s2
κt , we sample a candidate

κ̂t from the distribution N(κ̃t, s
2
κt). This candidate distribution is symmetric, and the

acceptance probability is thus given by

φ = min

{
f(κ̂t|Λ\{κ̂t})
f(κ̃t|Λ\{κ̃t})

; 1

}
.

4.2.2 Gibbs sampling for δ

Define ∆κt = κt − κt−1. The posterior distribution of δ is given by

f(δ|Λ\{δ}) ∝ f(κ|κ1, δ, σ
2
ε)f(δ) (38)

∝ exp

[
−

tT∑
t=t1+1

[∆κt − δ]2
2σ2

ε

]
· exp

[
− [δ − µδ]2

2σ2
δ

]
∝ exp

[
− 1

2aδ

(
δ2 − 2δbδ

)]
∼ N (bδ, aδ) ,

14



with

aδ =
σ2
ε

(T − 1) + σ2
ε/σ

2
δ

and

bδ =
(T − 1)

(T − 1) + σ2
ε/σ

2
δ

·
(

1

(T − 1)

tT∑
t=t1+1

∆κt

)
+

σ2
ε/σ

2
δ

(T − 1) + σ2
ε/σ

2
δ

· µδ.

We can use Gibbs sampling to draw a new value for δ.

4.2.3 Gibbs sampling for σ2
ε

The posterior of σ2
ε is given by

f(σ2
ε |Λ\{σ2

ε}) ∝ f(κ|κ1, δ, σ
2
ε)f(σ2

ε) (39)

=

tT∏
t=t1+1

1√
2πσ2

ε

exp

[
− [∆κt − δ]2

2σ2
ε

]
× σ−1

ε · 1[0≤σε≤Aε]

∝ (σ−2
ε )

T
2 exp

[
−(σ−2

ε ) ·
(

1

2

tT∑
t=t1+1

(∆κt − δ)2

)]
.

Therefore, we know that the posterior of σ−2
ε is

f(σ−2
ε |Λ\{σ2

ε}) ∝ (σ−2
ε )

T
2
−1−1 · exp

[
−(σ−2

ε ) ·
(

1

2

tT∑
t=t1+1

(∆κt − δ)2

)]

∼ Gamma

(
T − 2

2
,
1

2

tT∑
t=t1+1

(∆κt − δ)2

)
.

We can use Gibbs sampling to draw new values of σ−2
ε which can be transformed to σ2

ε .

4.3 Portfolio-specific mortality - Gamma prior

The posterior density of Θi
x for i ∈ {pf, rest} and y1 ≤ x ≤ yY is given by

f(Θi
x|Λ\{Θi

x}) ∝ f(D|E,Θpf,Θrest,α,β,κ)f(Θi
x) (40)

∝
∏
t∈S

(
e−E

i
t,x exp[αx+βxκt]Θix

(Eit,x exp[αx+βxκt]Θix)
Dit,x

Dit,x!

)Iit,x
× (cix)

cix

Γ(cix)
(Θi

x)
cix−1 exp[−cixΘi

x]

∝ exp[−(cix + f ix)Θ
i
x] · (Θi

x)
cix+Di•x−1

with

f ix =
∑
t∈S

I it,x · Ei
t,x exp[αx + βxκt] and Di

•x =
∑
t∈S

I it,x ·Di
t,x.
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The last line in (40) is proportional to a Gamma(cix +Di
•x, c

i
x + f ix) distribution and thus

we can use Gibbs sampling to obtain new values for Θi
x. Note that the posterior mean

can be written as

cix
cix +

∑
t∈S I

i
t,x · Ei

t,xµt,x
· 1 +

∑
t∈S I

i
t,x · Ei

t,xµt,x

cix +
∑

t∈S I
i
t,x · Ei

t,xµt,x
·
∑

t∈S I
i
t,x ·Di

t,x∑
t∈S I

i
t,x · Ei

t,xµt,x
.

If cix is chosen small relative to
∑

t∈S I
i
t,x·Ei

t,xµt,x, the posterior mean is close to
∑
t∈S I

i
t,x·Dit,x∑

t∈S I
i
t,x·Eit,xµt,x

which is often used in practice to determine portfolio-specific factors.

4.4 Portfolio-specific mortality - logNormal prior

Before we derive the posterior distribution for Θi
x and the hyperparameters, we define the

following variables and relations:

Σi = σ2
i · Γ(ρi)

Σ−1
i = 1

σ2
i
· Γ−1(ρi) = 1

σ2
i

1
1−ρ2i
· Γ̃−1

(ρi)

|Σi| =
∣∣σ2
i · Γ(ρi)

∣∣ = (σ2
i )
Y · (1− ρ2

i )
Y−1

Ψi = ln Θi − µ̃i = ln Θi + 1
2
σ2
i 1Y ,

with

Γ(ρ) =


1 ρ · · · ρY−2 ρY−1

ρ 1 · · · ρY−3 ρY−2

...
...

. . .
...

...
ρY−2 ρY−3 · · · 1 ρ
ρY−1 ρY−2 · · · ρ 1

 , Γ̃
−1

(ρ) =



1 −ρ 0 . . . 0

−ρ 1 + ρ2 −ρ . . . 0

0 −ρ . . .
. . . 0

...
...

. . . 1 + ρ2 −ρ
0 0 · · · −ρ 1


,

and 1Y is a column vector of ones of length Y .

4.4.1 Metropolis-Hastings sampling for Θi
x

Define Θi
−j = {Θi

y1
, . . . ,Θi

j−1,Θ
i
j+1, . . . ,Θ

i
yY
}. The posterior density of Θi

x for i ∈
{pf, rest} and y1 ≤ x ≤ yY is given by

f(Θi
x|Λ\{Θi

x}) ∝ f(D|E,Θpf,Θrest,α,β,κ)f(Θi|ρi, σ2
i ) (41)

∝
∏
t∈S

(
e−E

i
t,x exp[αx+βxκt]Θix(Θi

x)
Dit,x

)Iit,x
× f(Θi

x|Θi
−x, ρi, σ

2
i ).

In this last equation, we can simplify f(Θi
x|Θi

−x, ρi, σ
2
i ) for different x:
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• for x = y1:

f(Θi
x|Θi

−x, ρi, σ
2
i ) ∝ f(Θi

x|ρi, σ2
i ) · f(Θi

x+1|Θi
x, ρi, σ

2
i )

=
1

Θi
x

√
2πσ2

i

· exp

[
−(ln Θi

x + 1
2
σ2
i )

2

2σ2
i

]
× 1

Θi
x+1

√
2πσ2

i (1− ρ2
i )
· exp

[
−(ln Θi

x+1 + 1
2
σ2
i (1− ρi)− ρi ln Θi

x)
2

2σ2
i (1− ρ2

i )

]
∝ 1

Θi
x

√
2πσ2

i (1− ρ2
i )
· exp

[
− 1

2σ2
i (1− ρ2

i )

(
ln Θi

x + 1
2
σ2
i − ρi(ln Θi

x+1 + 1
2
σ2
i )
)2
]

∼ logN
(
−1

2
σ2
i + ρi(ln Θi

x+1 + 1
2
σ2
i ), σ

2
i (1− ρ2

i )
)
,

• for y1 < x < yY :

f(Θi
x|Θi

−x, ρi, σ
2
i ) ∝ f(Θi

x|Θi
x−1, ρi, σ

2
i ) · f(Θi

x+1|Θi
x, ρi, σ

2
i )

∼ logN

(
−1

2
σ2
i +

ρi
1 + ρ2

i

(
ln Θi

x−1 + ln Θi
x+1 + σ2

i

)
, σ2

i

(1− ρ2
i )

(1 + ρ2
i )

)
,

• for x = yY :

f(Θi
x|Θi

−x, ρi, σ
2
i ) ∝ f(Θi

x|Θi
x−1, ρi, σ

2
i )

∼ logN
(
−1

2
σ2
i + ρi(ln Θi

x−1 + 1
2
σ2
i ), σ

2
i (1− ρ2

i )
)
.

Given a current Θ̃i
x and Metropolis-Hastings sampling variance s2

Θix
, we draw a candidate

Θ̂i
x from the distribution ln Θ̂i

x ∼ N(ln Θ̃i
x − 1

2
s2

Θix
, s2

Θix
). Using this candidate distribution

ensures that E[Θ̂i
x] = exp

[
ln Θ̃i

x − 1
2
s2

Θix
+ 1

2
s2

Θix

]
= Θ̃i

x. The candidate distribution is not

symmetric and the acceptance probability is thus given by

φ = min

{
f(Θ̂i

x|Λ\{Θ̂i
x})

f(Θ̃i
x|Λ\{Θ̃i

x})
· g(Θ̃i

x|Θ̂i
x)

g(Θ̂i
x|Θ̃i

x)
; 1

}
.

Here, g(.|Θx) is the logNormal density with mean ln Θx − 1
2
s2

Θx
and variance s2

Θx
.

4.4.2 Metropolis-Hastings sampling for ρi

The posterior distribution of ρi for i ∈ {pf, rest} is given by

f(ρi|Λ\{ρi}) ∝ f(Θi|σ2
i , ρi) · f(ρi) (42)

=
1

(2π)Y/2Θi
y1
· · ·Θi

yY
· |Σi|1/2

× exp

[
−1

2
(ln Θi − µi)Σ−1

i (ln Θi − µi)′
]

× 1√
2πσ2

ρi

· exp

[
−(logit (ρi)− µρi)2

2σ2
ρi

]
· 1

ρi(1− ρi)
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∝ 1

ρi(1− ρi)(1− ρ2
i )
Y−1

2

× exp

[
− aiρ

2σ2
i (1− ρ2

i )

(
ρi −

biρ
aiρ

)2
]
· exp

[
−(logit (ρi)− µρi)2

2σ2
ρi

]
,

with aiρ =
∑yY −1

x=y1+1(Ψi
x)

2 and biρ =
∑yY

x=y1+1 Ψi
x−1Ψi

x. This final expression will be used in
the Metropolis-Hastings sampling algorithm. Given current value ρ̃i and Metropolis-
Hastings sampling variance s2

ρi
, we draw a candidate ρ̂i from the distribution ρ̂i ∼

TN(ρ̃i, s
2
ρi
|0, 1), with TN(a, b|c, d) a truncated normal distribution with mean a, variance

b, lower and upper bound c and d respectively. We use the truncated normal distribution
to ensure the candidate is between 0 and 1. The candidate distribution is not symmetric
and the acceptance probability is thus given by

φ = min

{
f(ρ̂2

i |Λ\{ρ̂2
i })

f(ρ̃2
i |Λ\{ρ̃2

i })
· g(ρ̃2

i |ρ̂2
i )

g(ρ̂2
i |ρ̃2

i )
; 1

}
.

4.4.3 Metropolis-Hastings sampling for σ2
i

The posterior distribution of σ2
i is given by

f(σ2
i |Λ\{σ2

i }) ∝ f(Θi|σ2
i , ρi) · f(σ2

i ) (43)

=
1

(2π)Y/2Θi
y1
· · ·Θi

yY
|Σi|1/2

· exp
[
−1

2
(ln Θi − µi)′Σ−1

i (ln Θi − µi)
]

× σ−1
i

∝ 1

σY+1
i

· exp
[
−σ−2

i
1
2
(ln Θi − µi)′Γ−1(ρi)(ln Θi − µi)

]
We use the final expression in a Metropolis-Hastings sampling algorithm. Given a current
value σ̃2

i and Metropolis-Hastings sampling variance s2
σ2
i
, we draw a new candidate σ̂2

i

from the candidate distribution ln σ̂2
i ∼ N(ln σ̃2

i − 1
2
s2
σ2
i
, s2
σ2
i
). The candidate distribution

is not symmetric and the acceptance probability is thus given by

φ = min

{
f(σ̂2

i |Λ\{σ̂2
i })

f(σ̃2
i |Λ\{σ̃2

i })
· g(σ̃2

i |σ̂2
i )

g(σ̂2
i |σ̃2

i )
; 1

}
.

Here, g(.|σ2
i ) is the logNormal density with mean lnσ2

i − 1
2
s2
σ2
i

and variance s2
σ2
i
.

5 Empirical study

In this section we illustrate our model using a real-world dataset. We estimate four
different models2:

1. The Lee-Carter model is used to estimate population mortality for the England &
Wales population for t ∈ T and x ∈ X . Parameters are estimated in a frequentist
framework, and this model is referred to as POP(f);

2 We use the same parameter constrains in all models to uniquely identify the population mortality
parameters.
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2. The Lee-Carter model is used to estimate population mortality for the England &
Wales population for t ∈ T and x ∈ X . Parameters are estimated in a Bayesian
framework, and this model is referred to as POP(B);

3. The model described in Section 2.2 is estimated using a Gamma prior for Θi
x. In

this model population and group-specific mortality are estimated simultaneously in
a Bayesian framework, and this model is referred to as PF(B-G);

4. The model described in Section 2.2 is estimated using a Gamma prior for Θi
x. In

this model population and group-specific mortality are estimated simultaneously in
a Bayesian framework, and this model is referred to as PF(B-logN).

These four different estimations allow us to illustrate:

• The effect on parameter estimates when moving from a frequentist to a Bayesian
framework3;

• The effect on population mortality parameters when estimating only population
mortality in a Bayesian framework versus jointly estimating population mortality
and group-specific mortality in a Bayesian framework;

• The effect of the different prior distributions for Θi
x on posterior credible intervals.

First we discuss the datasets used and the initialisation of the MCMC algorithm, then we
present estimation results and mortality predictions.

Data For the portfolio under consideration we use data from the Continuous Mortality
Investigation which contains mortality data of assured male lives in England & Wales. We
use the years s ∈ {s1 = 1990, . . . , sS = 2000} and the ages y ∈ {y1 = 45, . . . , yY = 75}.
The size of the portfolio relative to the population measured in observed deaths and
observed exposures is shown in Figure 3. In total there were 28.0 million life-years and
125,390 observed deaths. If mortality in the portfolio was similar to that in the population
we would expect the observed deaths and observed exposures to be of similar relative
size. However, the observed deaths and observed exposures differ clearly, and we expect
mortality in the portfolio to be lower than in the population.

Eleven years of data is too little to estimate a mortality trend, and therefore we
extend the dataset with population mortality data from England & Wales for the years
t ∈ {t1 = 1950, . . . , tT = 2000} and we use the ages x ∈ {x1 = 20, . . . , xX = 90} to ensure
we obtain mortality forecasts consistent with population mortality forecasts.4 The rest
is constructed by subtracting portfolio deaths and exposures from the population deaths
and exposures for those cells (t, x) for which Epf

t,x > 0.

3 To the best of our knowledge, this is the first paper to show the parameter estimates from a frequentist
Lee-Carter model and the corresponding credible intervals from a Bayesian Lee-Carter model, both
with Poissonian likelihood and assuming a random walk with drift for the period effect.

4 Population mortality data is obtained from the Human Mortality Database. The Human Mortality
Database is a joined project of the University of California, Berkeley (USA) and Max Planck Institute
for Demographic Research (Germany). Data are available at http://www.mortality.org.

19

http://www.mortality.org


0

10

20

30

40

Age

%

Portfolio as part of population (in %)

0

10

20

30

40

40 45 50 55 60 65 70 75

Observed deaths
Observed exposures

Figure 3: The relative size of the portfolio as a portion of the population measured in ob-
served deaths and observed exposures. For each age the relative size is computed
as
∑

t d
pf
t,x/

∑
t d

pop
t,x and

∑
t e

pf
t,x/

∑
t e

pop
t,x where each summation is over t ∈ S.

Initialising prior distributions To initialise the prior distributions proposed in Sec-
tion 3 we have to set the constants used in these specifications. We do this in such a way
that the priors contain little information about our prior belief, i.e. such that the prior
variance is large and the impact of the prior distribution on the posterior distribution is
limited.

Regarding the initial draw of the MCMC simulations, we take the following approach.
Let α̂x, β̂x and κ̂t denote the frequentist Poisson parameter estimates of the Lee-Carter
model calibrated to the England & Wales population mortality data. We use these esti-
mates as initial values for the population parameters and set the initial portfolio-specific
factors equal to one. Using the frequentist parameter estimates for βx and κt, we obtain
maximum likelihood estimates for µβ, σ2

β, δ and σ2
ε , and use these as initial values for the

hyperparameters. For the hyperparameters of Θi
x we start with ρi = 0.8 and σ2

i = 1.

• To ensure the prior does not contain much information, we use ax = bx · exp(α̂x)
and bx = 0.01, see Antonio et al. (2015). This way, E[exp(αx)] = exp(α̂x) with large
variance.

• As described in Section 3, we apply a parameter constraint to β. Therefore, we

use νβ = X−
1
2 and c2

β = (0.5 ·X−
1
2 )2, which implies that the prior 95% confidence

interval contains only positive values for µβ. For the variance hyperparameter we
use Aβ = 1.

• Given that we expect the κt’s to exhibit a downward trend, we use µδ = −2 and
σ2
δ = 0.52. For the variance hyperparameter we use Aε = 5.

• For the Gamma prior on the portfolio-specific factors we use cix = 1 for all x and for
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i ∈ {pf, rest}. As a result, the prior 95% confidence interval for Θi
x is approximately

(0, 4).

• For the logNormal prior on the portfolio-specific factors we use µρi = 0 and σ2
ρi

= 1,
and for the variance hyperparameter we use Ai = 1 for i ∈ {pf, rest}.

• For all Metropolis(-Hastings) sampling variances in the proposal distributions, we
use s2 = 0.52.

Convergence diagnostics We run 450, 000 simulations of the MCMC algorithm for
both prior distributions of the group-specific factors. We remove an initial 50, 000 sim-
ulations (the burn-in period), and then collect information from every 200th iteration5,
resulting in a final sample size of 2, 000. We perform the usual convergence checks6.

Estimation results Figure 4 shows frequentist and Bayesian estimation results of the
population mortality parameters. The parameter estimates for POP(f) are represented
by the red lines, and the 95% credible intervals (equal-tailed) derived from the posterior
distributions for POP(B), PF(B-G) and PF(B-logN) are represented by respectively the
magenta, blue and grey areas.

The simultaneous estimation of the Lee-Carter and the time series model leads to
slightly different parameter estimates. The largest differences occur at the estimates for
βx: for low and high ages the estimates in POP(B) are lower than in POP(f), and for the
mid-ages it is vice versa. As a result, fitted mortality rates and projections of mortality
rates for POP(f) and POP(B) will differ slightly. In models PF(B-G) and PF(B-logN) we
also include portfolio data. The credible intervals for the parameters in the baseline force
of mortality µt,x are similar for αx and κt. For βx we observe differences compared to
POP(B), but the prior distribution on Θi

x does not have a significant effect on the credible
interval for βx. The posterior distributions for the hyperparameters δ and σ2

ε are similar
for all model specifications.

Figure 5 shows estimated portfolio-specific factors using different methods. The factors
represented by the green lines are estimated using a frequentist method that corresponds
to methods used in practice. First, the observed population mortality rate is computed.
Then, a Poisson GLM is estimated in which the deaths in the portfolio are explained
using the portfolio exposure and the observed population mortality rate as offset, and
age-dependent factors are used as explanatory variables:

Di
t,x ∼ Poisson(Ei

t,xµ
obs
t,x ·Θi

x)

The factors represented by the red lines are obtained in a similar way, but in this case fitted
population mortality rates from the Lee-Carter model are used in the offset of the Poisson
estimation instead of observed mortality rates. The blue and grey areas correspond to
the 95% credible intervals (equal-tailed) for PF(B-G) and PF(B-logN).

The estimated factors for the portfolio are all below one, implying that mortality in the
portfolio is lower than in the population, and in the rest the factors are generally above one.

5 This high lag is needed to ensure convergence when using the logNormal prior on the group-specific
factors.

6 An appendix with selected convergence diagnostics is available upon request from the corresponding
author.
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Figure 4: Parameter estimates for the model as specified in Section 2 applied to the CMI
and England & Wales datasets using portfolio data from 1990-2000. In the five
top panels the red lines correspond with parameter estimates for POP(f), and the
shaded areas and corresponding lines show the 95% credible interval (equal-tailed)
and the median of the posterior distribution for the different parameters. The
magenta areas relates to the posterior distributions for POP(B), the blue areas to
PF(B-G), and the grey areas to PF(B-logN). (Coloured versions of the figures can
be found online.)

Further, the estimated factors from the frequentist methods show similar patterns, and
the credible intervals for PF(B-G) show similar spiky behaviour as the frequentist factors,
but the level differs. This can be explained by the difference in parameter estimates for
βx in the frequentist and Bayesian case. As a result of this difference, the baseline force
of mortality has changed which justifies portfolio-specific factors at a different level. The
credible intervals for PF(B-logN) in which dependence between factors within a group is
assumed are much smoother than the factors estimated assuming independence between
factors within a group. The posterior means of the mean reversion coefficients are ρθpf =
0.992 and ρθrest = 0.999. Finally, the posterior distributions of Θpf

x have smaller credible
intervals than the posterior distributions of Θrest

x . This can be explained by the fact that
the portfolio is apparently more homogeneous than the remainder of the population.

Forecasting of mortality Figure 6 shows projections of mortality rates from 1) a
combination of POP(f) and frequentist estimates of portfolio-specific factors (hereafter:
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Figure 5: Parameter estimates for the model as specified in Section 2 applied to the CMI
and England & Wales datasets using portfolio data from 1990-2000. The green
and red lines show the estimated factors that are estimated using a Poisson GLM
in which the portfolio deaths are explained using age-dependent factors with the
portfolio exposure and a force of mortality as offset. For the green lines the observed
population force of mortality is used, and for the red lines we used the fitted Lee-
Carter force of mortality on population data. The shaded areas and corresponding
lines show the 95% credible interval (equal-tailed) and the median of the posterior
distribution for the different parameters. The magenta areas relates to the posterior
distributions for POP(B), the blue areas to PF(B-G), and the grey areas to PF(B-
logN). (Coloured versions of the figures can be found online.)

PF(f))7, 2) PF(B-G), and 3) PF(B-logN). In these graphs we only show fitted mortality
rates for the observations that are included in the likelihood, thus for the population for
t < 1990 and for the portfolio and the rest for t ≥ 1990. We notice again that mortality in
the portfolio is not only lower, but also less uncertain than in the rest of the population.

Projections of mortality rates in a Bayesian setting using the two different prior dis-
tributions for Θi

x show little differences; both direction and uncertainty in the projections
are similar8. However, there are differences between the Bayesian and frequentist pro-
jections. Especially for the lower ages, see for example mpf

t,40 in Figure 6, the in-sample
estimates of the mortality rates are closer to the observations for the Bayesian setting
including portfolio-specific mortality than for the frequentist two-step approach. As a
result, the projections for portfolio-specific mortality rates connect better with the latest
observations.

We further observe that the confidence intervals for the projections from PF(B-G) and
PF(B-logN) are similar to those from PF(f), though only the first two include parameter
uncertainty. When we include in our projections the uncertainty in the variance parameter
in the time series model, a higher variance leads to larger projection intervals whereas a

7 We used the estimated portfolio-specific factors that are estimated using a Poisson GLM to explain
the portfolio deaths with the portfolio exposure and fitted POP(f) force of mortality as offset. These
portfolio-specific factors are displayed in Figure 5 by the red lines.

8 These differences are small for the ages shown. For some ages, the projections start at a different
level, because their group-specific factor is estimated at a different level, see e.g. Θpf

43 in Figure 5.
However, the frequentist projections also start at a more distant level. Relevant plots are included in
an appendix that is available upon request from the corresponding author.
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24



lower variance leads to smaller projection intervals. Including parameter uncertainty in
projections of mortality rates therefore does not automatically lead to larger projection
intervals.

6 Conclusion

In this paper we present a Bayesian model to simultaneously estimate population mortality
and portfolio-specific mortality. This model is especially useful when there is only a limited
number of years with observations available for the portfolio, since it allows for corrections
on the population mortality rate projections.

We illustrate our model using the dataset on CMI assured male lives in combination
with data on the England & Wales population. Parameter estimates for the population
mortality model are similar in the Bayesian and frequentist setting, but the portfolio-
specific factors differ from frequentist estimates. Also, the posterior distributions for
the portfolio-specific factors are smoother when assuming dependence in the prior dis-
tribution. Our approach to model population mortality and portfolio-specific mortality
simultaneously may help to better explain the data. Fitted values are closer to observed
central death rates, which subsequently leads to projections of portfolio-specific mortality
rates that connect better with recent observations. Further, this approach provides an
objective way to determine to what extent mortality in the portfolio is different from
mortality in the population.

We show projections of forces of mortality in a frequentist framework and from our
proposed models in a Bayesian framework. For the projections in a frequentist framework
we do not include parameter uncertainty, but for our models in the Bayesian framework we
can incorporate parameter uncertainty in the projections in a natural way. The confidence
intervals are similar, indicating that parameter uncertainty in the parameters of the time
series model does not necessarily increase uncertainty in mortality rate projections.

The datasets considered in this paper only contain calendar year and age as explana-
tory variables. The proposed model can be extended to include other explanatory vari-
ables, see for example Gschlössl et al. (2011) in a frequentist setting. Further, in a
frequentist setting the estimates of βx can be rather volatile over ages. In a Bayesian
setting often independence is assumed in the prior of βx, and the posterior distribution of
βx is as volatile as the frequentist estimate. A smoother posterior distribution for βx may
lead to biologically more plausible projections of mortality rates. It is therefore worth
exploring how mortality projections change when assuming dependence between βx’s.
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