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Abstract

Pricing of an Insurance product is a necessary but not easy issue for Insurance company. To meet

the no-arbitrary pricing model in asset pricing theory, Wang (1995) proposed a recent premium

principle named proportional hazards transform. Amount of premiums under this principle can

be estimated by parametric, nonparametric and semi-parametric methods. We compare different

estimators for heavy-tailed losses within a limited sample size. In particular, we investigate the

asymptotic normality of extremes estimators. The detailed simulation study in this thesis clearly

demonstrates the excellent performance of extreme estimators.
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Chapter 1

Introduction

Insurance is a fundamental financial product that is particularly useful to hedge against risk of

losses. The insured transfers the risk of losses to the insurer, usually insurance companies, by

paying a certain amount of premium. After pooling risks in a large scale, the insurer reduces the

average risk over a large number of the insured by diversification or other hedge methods. One

possible option for the insurer (cedant) is to buy reinsurance to further transfer their risk to the

reinsurer. Consequently both of the reinsurer and the insurer allocate a portion of the risk of losses

as well as the premiums.

With no doubt, the determination of the amount of premium is one of most crucial topics

for both insurers and reinsurers. If the premium is too high, the insurance companies lose their

market. If the amount of premium is too small, the insurers or reinsurers expose themselves to risk

of significant financial loss. This problem is particularly relevant to the insurance company when

the insurers or reinsurers are pricing heavy-tailed losses, in other words, the losses of which extreme

values occurs with high probability. Here, we give the formal definition of heavy-tailed loss in this

thesis as following.

Definition 1. A loss X is said to be heavy-tailed if for some r > 0, E[Xr] =∞.

In order to quantify the risk premium properly, a variety of premium principles is developed.

Examples of traditional premiums principles are the expected value principle, the standard devi-

ation principle, value at risk and etc. In this thesis, we focus on a recent principle proposed by

Wang based on proportional hazards transform. We call the premium computed according to this

principle as proportional hazards premium, or in short PH-premium. Wang’s principle satisfies

all the desired properties of premium principle including subadditivity and layer additivity, which

conforms to the adjusted distribution methods advocated by Venter for no-arbitrage pricing model.

We give the formulation of PH-premium for regular insurance as following.

Definition 2. Given a loss distribution F (u) = Pr{X ≤ u}, for some exogenous index 0 < η ≤ 1,
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the proportional hazards (PH) transform refers to a mapping Sw(u) = [1− F (u)]η, and the PH-

premium refers to the expected value under the transformed distribution:

Hη[X] =

∫ ∞
0

[1− F (u)]ηdu

which represent the risk-adjusted premium and Hη[X] ≥
∫∞

0 [1− F (u)]du = E[X]

A standard product of reinsurance is excess-of-loss reinsurance, which means the reinsurer only

offset the loss of cedent exceeding a certain amount of retention. By purchasing excess-of-loss

reinsurance, the cedants limit their risk at a certain level. Because of the additivity property of

proportional hazards premium for losses, the PH-premium of excess-of-loss reinsurance immediately

follows as bellowing.

Definition 3. Given a loss distribution F (u) = Pr{X ≤ u}, for some exogenous index η(0 < η ≤

1), the risk-adjusted premium of excess-of-loss reinsurance at retention a according to proportional

hazards (PH) transform is

Hη,a[X] =

∫ ∞
a

[1− F (u)]ηdu

In practice, lacking prior knowledge of losses, the insurers often adopt estimates of premi-

ums because accurate computation is unfeasible. Both parametric and nonparametric estimation

approaches are available. The insurers favor for parametric approaches estimate the relevant pa-

rameters by restricting themselves on certain loss distribution. Parametric approach usually gives

most effective results if the choice on loss distribution is appropriate. However, on the other hand,

these insurers are obviously running the risk of misidentification of the loss distribution. Such

risk can be devastating to the insurance company because an artificial loss distribution may se-

riously underestimate the actual amount of premium. In this sense, the insurers often switch to

nonparametric method for robust results.

Although the limiting behaviors of these estimators are thoroughly studied in the literature,

their performances within a limited sample size are not immediately clear. In fact, for heavy-tailed

losses such as fire and flood that cannot be observed frequently, both parametric and nonparametric

estimations can perform poorly. This motivates the development of a semiparametric method based

on Extreme value theory. Extreme value theory restricts the behavior of the distribution function in

the tail basically to resemble a limited class of functions that can be fitted to the tail of distribution

(de Haan, 2006). In general, the semiparametric method improves the nonparametric estimators

by integrating corrections for tail behavior.

The aim of this thesis is to compare different estimation approaches for proportional hazards

premium of heavy-tailed losses. We investigate both the empirical and theoretic results for regular
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insurance and excess-of-loss reinsurance. In chapter 2 to 4, we respectively discuss parametric,

nonparametric and semi-parametric approaches. The main attention is on extreme estimations. In

particular, we offer several new theorems on the asymptotic normality of extreme estimators. The

proofs are included in Appendix. For analysis on different estimation procedures in case of finite

size of data, in Chapter 5, we carry out a simulation study. The outcomes clearly demonstrate the

excellent performance of extreme estimators. Finally, we conclude this thesis in Chapter 6.
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Chapter 2

Parametric Approach: Maximum
Likelihood Estimator

When we know the loss has a given parametric distribution function, it suffices to estimate its

parameter for any further inference. In this case, parametric process is usually most effective due

to factual prior knowledge. In this chapter, we study the maximum likelihood estimation (MLE)

of proportional hazards premiums.

We can easily derive MLE of PH-premium from the MLE of parameters of loss distribution based

on the invariance property of maximum likelihood estimators. The invariance property of MLE

states that the MLE of any transformation of parameters is nothing but the function value at MLE

of parameters. Indeed, suppose loss X has a cumulative distribution function Fθ(x) = Pr{X ≤ x},

which is determined by parameter(s) θ ∈ Θ ⊂ Rd. Denote θ̂ as the MLE1 of parameter(s) θ. Define

function Gη,a(θ) =
∫∞
a [1− Fθ(u)]ηdu for all θ ∈ Θ. Then , for regular insurance, the MLE of

PH-premium is

Gη,0(θ̂) =

∫ ∞
0

[1− Fθ̂(u)]ηdu

and, for excess-of-loss reinsurance at retention level a, the MLE of PH-premium is

Gη,a(θ̂) =

∫ ∞
a

[1− Fθ̂(u)]ηdu

Usually above two estimators can be computed analytically. Numerical integration can solve

other cases and can be easily implemented by computers. This parametric estimation procedure

assumes the data are drawn from a certain probability distribution. An obvious risk embedded in

this approach is misidentification of loss distribution. If the probability distribution of loss is not

chosen properly, this parametric approach usually fail to deliver satisfying estimations.

1Here we make a natural assumption on the existence of MLEs.
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2.1 Asymptotic Normality and consistency of MLE estimators

MLE estimators are always consistent and asymptotic normal under regularity conditions. Here,

we do not discuss any further in the proof of this statement since it is written in a lot of past

literatures. First we assume the parameter space is one-dimensional. The multidimensional cases

are entirely analogous. The asymptotic normality of maximum likelihood estimation, for all a ≥ 0

under regularity conditions, says

√
n(Gη,a(θ̂)−Hη,a[X]) =

√
n(Gη,a(θ̂)−Gη,a(θ))

d−→ N

(
0,

(gη,a(θ))
2

I(θ)

)
(2.1)

where, for any positive value a, gη,a(·) is the derivative of Gη,a(·) and I(θ) is the fisher information

for parameter θ. Note here, by Leibniz integral rule, for all a ≥ 0,

gη,a =
d

dθ

∫ ∞
a

[1− Fθ(x)]ηdx =

∫ ∞
a

d

dθ
[1− Fθ(x)]ηdx = −

∫ ∞
a

[1− Fθ(x)]η−1dFθ(x)

dθ
dx

Then it immediately follows by Slutsky’theorem that , that is , denote Mη,θ(a) =
gη,a(θ)
Gη,a(θ)

√
n

(
Gη,a(θ̂)

Hη[X]
− 1

)
=
√
n

(
Gη,a(θ̂)

Gη,a(θ)
− 1

)
d−→ N

(
0,

[Mη,θ(a)]2

I(θ)

)
(2.2)

which implies that the relative error of our estimation also converge to 0 in probability with converge

rate of Op(n−2). Here, note that lim
a→∞

gη,a(θ) = 0 and lim
a→∞

Gη,a(θ) = 0, by L’Hôpital’s rule

lim
a→∞

Mη,θ(a) = lim
a→∞

gη,a(θ)

Gη,a(θ)
= lim

a→∞

dgη,a(θ)/da

dGη,a(θ)/da

= lim
a→∞

{
−[1− Fθ(a)]η−1dFθ(a)

dθ

}
/ {[1− Fθ(a)]η}

= lim
a→∞

{
1

1− Fθ(a)

d[1− Fθ(a)]

dθ

}
= lim

a→∞

d log[1− Fθ(a)]

dθ

Consequently, when lim
a→∞

d log[1−Fθ(a)]
dθ = ∞, such as for Fréchet and Burr distribution, our MLE

may perform very bad for large a within a finite size of sample because of the large asymptotic

variance . The simulation study in Chapter 5 offers empirical evidence for this statement.
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Chapter 3

Nonparametric Approach: Empirical
Estimator

Another alternative estimation method for PH-premium is nonparametric empirical estimation. In

this procedure, we estimate loss distribution function by the empirical distribution function. Then

we construct the empirical estimators for PH-premium accordingly. Here, we do not need any

assumption on loss distribution nor on any relevant parameter. It means this estimation procedure

is entirely free of the risk of misidentification of loss distribution. However, an obvious drawback of

the empirical estimators is its relatively low quality compared to MLEs if the specification of loss

distribution is, in fact, appropriate.

Hence, given i.i.d. claims data X1, ..., Xn, the empirical estimators of PH-premium for regular

insurance is

µ̂EMP
η =

∫ ∞
0

[1− Fn(x)]ηdx =

n∑
i=1

[(
n+ 1− i

n

)η
−
(
n− i
n

)η]
Xi:n

and for excess-of-loss reinsurance with retention a, when a ≤ Xn:n, is

µ̂EMP
η,a =

∫ ∞
a

[1− Fn(x)]ηdx =

∫ ∞
Xk∗:n

[1− Fn(x)]ηdx+

∫ Xk∗:n

a
[1− Fn(x)]ηdx

=
n∑

i=k∗

[(
n+ 1− i

n

)η
−
(
n− i
n

)η]
Xi:n −

(
1− k∗ − 1

n

)η
a

where k∗ = min{k|Xk:n >= a} and Fn is empirical distribution function of losses.

When a > Xn:n, we have no observations exceeding a.1 In this case, empirical estimation may not

be appropriate since empirical distribution function contains no information beyond the range of

data. Nevertheless, one possible solution is simply to take estimator with value 0.

1Fortunately, this situation does not occur in our simulation outcomes.
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3.1 Asymptotic Normality of Empirical Estimators

The empirical estimator of PH-premium for regular insurance proposed above is an L-statistic.

Many authors have explored the limiting behavior under various conditions. However, to the best

of this author’s knowledge, no general statement is suggested in literatures. A recent discovery by

Jones and Zitikis (2003) says following

Fact 1. (Jones and Zitikis, 2003, Theorem 3.2). For any 1 > η > 1/2, we have

√
n(µ̂EMP

η −Hη[X])
d−→ N(0, σ2

η)

where

σ2
η = η2

∫ 1

0

∫ 1

0
[min(s, t)− st]sη−1tη−1dQ(1− s)dQ(1− t) <∞

provided that E(|X|r) <∞ for some r > 2/(2η − 1).

Here, Q(·) is the generalized quantile function of loss distribution function F (·) defined by

Q(s) := inf{x > 0 : F (x) > s} for all 0 ≤ s ≤ 1.

The consistency of the extreme estimators then immediately follows from their asymptotic normality

under corresponding conditions.

Note that the cases that η ≤ 1/2 is not covered in the above proposition. Jones and Zitikis (2003)

conclude that it is still an open question for these cases whether the asymptotic normality in the

above theorem holds. In this thesis, we give a partial answer to this question. Please refer to

Appendix for details.

We do not have findings about the asymptotic normality of the empirical estimator for excess-of-loss

reinsurance. This may be a future adventure for future study. For the performance of empirical

estimator of PH-premium for excess-of-loss reinsurance, please refer to the simulation study in

Chapter 5.
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Chapter 4

Semiparametric Approach: Extremes
Estimator

To develop the estimation procedure for the semiparametric extreme estimator, we first give an

introduction to Extreme Value Theory. We start from the asymptotic distribution of the maximum

of claims data. If the maximum of claims data drawn from a particular distribution function F have

a continuous asymptotic distribution, then it can be taken from a class of distributions determined

by a single parameter γ. The γ is uniquely determined by F and named extreme value index. 1

Generally speaking, The extreme value index measures the tail heaviness: the larger γ, the heavier

tail F has. When γ > 0, then loss X is heavy-tailed. In this Chapter we only consider the losses

with positive extreme value index. Below lemma give an convenient way to compute γ > 0 of a

given loss distribution F .

Lemma 1. (de Haan and Ferreira 2006)Given a loss distribution F (u) = Pr{X ≤ u}, it has an

extreme value index γ > 0 if and only if

lim
t→∞

1− F (tx)

1− F (t)
= x

− 1
γ , x > 0

However, if we do not know the loss distribution F , we cannot apply above lemma. Instead, we

estimate γ > 0 by Hill estimator, that is, given i.i.d claims data X1, ..., Xn and a positive integer k,

γ̂k =
1

k

∑k−1

i=0
log(Xn−i:n)− log(Xn−k:n)

4.1 Extreme Estimators

In this section, we describe how we construct the extreme estimators.

From Lemma 1, we know 1− F (tx) ≈ (1− F (t))x
− 1
γ for large t.

1However,the reverse statement is not true, i.e., different distribution functions may give exactly the same extreme
value index, for example, both Normal and Gamma distributions correspond to γ = 0.
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Take a = tx and t = F−1(1− k
n), for large a

1−F (a) ≈
(

1− n− k
n

)(
a

F−1(1− k
n)

)− 1
γ

=
k

n

(
F−1(1− k

n)

a

) 1
γ

≈ k

n

(
Xn−k:n

a

) 1
γ

≈ k

n

(
Xn−k:n

a

) 1
γ̂k

Then, if 1 ≥ η > γ, we have∫∞
0 [1− F (x)]ηdx

=
∑n−k−1

i=0

∫ Xi+1:n

Xi:n
[1− F (x)]ηdx+

∫∞
Xn−k:n

[1− F (x)]ηdx

≈
∑n−k−1

i=0

∫ Xi+1:n

Xi:n
[1− Fn(x)]ηdx+

∫∞
Xn−k:n

[
k
n

(
Xn−k:n

x

) 1
γ

]η
dx

=
∑n−k−1

i=0

(
1− i

n

)η
(Xi+1:n −Xi:n) +

(
k
n

)η
Xn−k:n

η
γ
∫∞
Xn−k:n

x−
η
γ dx

= 1
nη
∑n−k−1

i=1 Xi:n[(n− i+ 1)]η − (n− i)]η] + 1
nηXn−k:n(k + 1)η +

(
k
n

)η
Xn−k:n

η
γXn−k:n

1− η
γ γ
η−γ

= 1
nη
∑n−k−1

i=1 Xi:n[(n− i+ 1)]η − (n− i)]η] + 1
nηXn−k:n[(k + 1)η + kη γ

η−γ ]

≈ 1
nη
∑n−k−1

i=1 Xi:n[(n− i+ 1)]η − (n− i)]η] + 1
nηXn−k:n[(k + 1)η + kη γ̂k

η−γ̂k ]

= 1
nη

n−k∑
i=1

Xi:n[(n− i+ 1)η − (n− i)η] +
(
k
n

)η
Xn−k:n

η
η−γ̂k

Similarly,∫ ∞
a

[1− F (x)]ηdx ≈
∫ ∞
a

[
k

n

(
Xn−k:n

x

) 1
γ

]η
dx =

(
k

n

)η
X

η
γ

n−k:n

∫ ∞
a

x
− η
γ dx

=

(
k

n

)η
X

η
γ

n−k:n

[
0−

(
a
− η
γ

+1

− η
γ + 1

)]
=

(
k

n

)η
X

η
γ

n−k:na
− η
γ

+1 γ

η − γ
≈
(
k

n

)η
X

η
γ̂k
n−k:na

− η
γ̂k

+1 γ̂k
η − γ̂k

We summarize the extreme estimators as following.

Definition 4. Given i.i.d. claims data X1, ..., Xn and a positive integer k, suppose its distribution

function is F with extreme value index γ > 0 and γ̂k < η , for all η such that 1 ≥ η > γ we define

our EVT estimator 2 for
∫∞

0 [1− F (x)]ηdx as

µ̂EV Tη =
1

nη

n−k∑
i=1

Xi:n[(n− i+ 1)η − (n− i)η] +

(
k

n

)η
Xn−k:n

η

η − γ̂k

The EVT estimator for
∫∞
a [1− F (x)]ηdx is

µ̂EV Tη,a =

(
k

n

)η
X

η
γ̂k
n−k:na

− η
γ̂k

+1 γ̂k
η − γ̂k

where X1:n, ..., Xn:n is the increasing order statistics of X1, ..., Xn and γ̂k is Hill estimator of X

with integer k.

4.2 First-order and Second-order Conditions

We have to impose some conditions in order to apply Extreme Value Theory. It will become clear

that the so-called extreme value condition is on the one hand quite general (it is not easy to find

2
∫∞
0

[1− F (x)]ηdx =∞ if η < γ
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distribution that do not satisfy them) but on the other hand is sufficiently precise to serve as a

basis for extrapolation(de Haan and Ferreira 2006).

In the beginning of this chapter, we already see loss distribution F , with extreme value index γ > 0,

has to satisfy the condition in Lemma 1. This is the so called ‘first-order condition’ and it is widely

used to determine the value of extreme value index. Besides, a ‘second-order’ condition is also often

imposed. The ‘second-order’ condition is satisfied if there exists a positive or negative function a(·)

with lim
t→∞

a(t) = 0, such that

lim
t→∞

(a(t))−1

(
1− F (tx)

1− F (t)
− x−1/γ

)
= x−1/γ x

ρ/γ − 1

ρ/γ
(4.1)

or equivalent

lim
s↓0

(A(s)−1)

(
Q(1− sx)

Q(1− s)
− x−γ

)
= x−γ

xρ − 1

ρ
(4.2)

for all x > 0 with second-order index ρ ≤ 0. Here, Q(·) is the quantile function defined in Chapter 3

and A(s) := γ2a(Q(1− s)). When ρ = 0, interpret both xρ/γ−1
ρ/γ and xρ−1

ρ as log(x). This condition

is often used to evaluate the converge rate of optimal choice of k for Hill estimator. Generally

speaking, the smaller the ρ, the smaller the k should be chosen for Hill estimator. The asymptotic

normality of Hill estimator follows from the first-order and second-order conditions.

Fact 2. (de Haan and Ferreira 2006, Theorem 3.2.5) Given i.i.d. claims data X1, ..., Xn and a

positive integer k, suppose its distribution function is F with extreme value index γ > 0 and F

satisfies the second-order condition (4.1) (and (4.2)) with second order parameter ρ ≤ 0, i.e., Then

√
k(γ̂k − γ)

d−→ N(0, γ2)

with N being normal distribution, provided k = k(n)→∞,k/n→ 0,n→∞, and
√
kA
(
k
n

)
→ 0.

The consistency of Hill estimator immediately follows from its asymptotic normality.3

4.3 EVT-transform

Peng (2001) has shown the asymptotic normality of the extreme estimator for regular insurance

when η = 1, i.e. the PH-premium equals to the expected value of loss. To generalize the Peng’s

result for all 1 ≥ η > γ, we first determine a transformation of loss X, say Y , with expectation

equals the PH-premium with index η. We name the transform from X to Y as EVT-transform.

Theorem 1 below states the exact expression of EVT-transforms and some of its properties .

3In fact, the consistency of Hill estimator still holds under a weaker condition. For details please check Theorem
3.2.4 in (de Haan and Ferreira 2006)
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Theorem 1. Given a nonnegative random variables X of distribution function F with extreme

value index γ > 0 and an index 0 < η ≤ 1, EVT-transform with transform index 1 > η > 0 for X is

a a mapping J(·) : R → R such that Jη(x) = η[1− F (x)]η−1. Note that Jη is well defined because

here F (x) < 1 for all x > 0 (de Haan and Ferreira 2006). Write

Y = Jη(X) =
ηX

[1− F (X)]1−η

EVT-transform satisfies following properties:

1. Jη(x) is strictly increasing therefore is invertible. 2. E(Y ) = E(Jη(X)) = Hη[X] =
∫∞

0 [1− F (x)]ηdx

3. Y has a heavy tail with extreme value index γY = γ + 1− η

4. E(Y ) <∞ if 1 ≥ η > γ and E(Y ) =∞ if 0 < η < γ

5. yp = (1− p)η−1ηxp where yp and xp are the p-quantile of X and Y.

6.
∫∞
a [1− F (x)]ηdx = E([J(X)− Jη(a)]+)− (1− η)a[1− F (a)]η

Unfortunately, EVT-transform depends on the distribution function of loss X. This means we

cannot perceive the value of Y from the data thereby cannot apply Peng’s result on Y directly. A

solution is that we use the estimations of Y instead of the true values. We can establish estimations

of Y base on estimation of the distribution function. With a suitable choice of the estimation of

the distribution function, the extreme estimator for expectation of Y is just the extreme estimators

of PH-premium of X for regular insurance.

Furthermore, Peng (2001) points out that his extreme estimator shows distinct asymptotic behav-

iors between circumstances γ > 1/2 and γ ≤ 1/2. Analogously, we also shows that the (general-

ized) extreme estimators also shows different asymptotic behaviors between cases γY > 1/2 and

γY ≤ 1/2, in Theorem 2.

4.4 Asymptotic Normality and Consistency

In previous sections, we have introduced the extreme value theory and EVT-transform. Although

EVT-transform is not used in the rest of this thesis, it helps a lot to motivate following theorem

and clarify the necessary conditions. The main results for this chapter are given by the following

theorems in which we establish the asymptotic normality of extreme estimators. Theorem 2 is

a generalization of the statements made by Peng (2001) and Necir and Meraghni (2009). In the

previous section, we already point out that the findings from (Peng 2001) can only apply to a

particular case η = 1. The work of Necir and Meraghni (2009) is much more general but still

limited in the cases γ > 1/2. Here, we make a significant contribution to this field by providing a

general theorem that apply to all η and γ such that 1 ≥ η > γ.
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Theorem 2. Suppose F is a distribution function of loss X satisfying both first-order condition

and second-order condition ( (4.1) and (4.2)) with extreme value index 1 > γ > 0. Assume Q(·) is

continuously differentiable on [0,1). Take Y = Jη(X) with γY = γ + 1− η. If k = kn is such that

k →∞,k/n→ 0 and k
1
2A(k/n)→ 0 as n→∞, then for any 1 ≥ η > γ we have

√
n

ση(k/n)

(
µ̂EV Tη −Hη[X]

) d−→ N(0, σ2
η,γ)

where

σ2
η,γ =

{
1 if γY = γ + 1− η ∈ (0, 1/2]

(γ+1−η)(γ+1/2−η)[(η−γ)2+1]

(η−γ)4
+ [4(η−γ)−1]

2(η−γ) if γY = γ + 1− η ∈ [1/2, 1)

and

σ2
η(x) = η2

∫ 1

x

∫ 1

x
[min(s, t)− st]sη−1tη−1dQ(1− s)dQ(1− t) , for 0 6 x 6 1

Remark 1. If F satisfies, as x→∞,

1− F (x) = c1x
−1/γ + c2x

−1/γ+ρ/γ(1 + o(1))

for constant c1 > 0,c2 6= 0,γ > 0 and ρ < 0.

Then the condition
√
kA(k/n)→ 0 is equivalent to k(n) = o(n−2ρ/(1−2ρ)).4

Remark 2. From the proof of theorem 3, we get, under the assumptions in theorem 2, moreover,

if γY = γ + 1− η < 1/2,
√
n
(
µ̂EV Tη − µ̂EMP

η

) d−→ 0

This implies that,for regular insurance, empirical estimator and extreme estimator of the PH-

premium shows same asymptotic behavior when γY = γ + 1− η < 1/2. We do not have finding for

cases of γY = γ+ 1− η ≥ 1/2. However, the simulation outcomes in Chapter 5 suggests that under

this circumstance the extreme estimator often significantly outperform the empirical estimator.

Though Theorem 2 applies to most general cases, still several possible improvement can be made

in the future study. For example, the condition about continuously differentiability of quantile

function Q may be eliminated. Necir, Rassoul and Zitikis (2010) use Vervaat process to avoid this

requirement for the case η = 1 and 1 > γ > 1/2.

Next, we provide Theorem 3 for theorectical completeness on the asymptotic normality of

extreme estimator for excess-of-loss reinsurance.

Theorem 3. Suppose F is a distribution function of loss X satisfying (4.1) and (4.2) with extreme

value index 1 > γ > 0 and Q(·) is continuously differentiable on [0,1). Let Y = Jη(X) with

4See Page 76-77 in de Haan and Ferreira (2006)
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γY = γ + 1 − η. If k = kn is such that k → ∞,k/n → 0 and k
1
2A(k/n) → 0 as n → ∞. For

any 1 ≥ η > γ we assume function G(·) : [0,∞) 7→ (0, Hη[X]] such that G(x) =
∫∞
x [1− F (t)]ηdt

satisfies the second-order condition with second-order parameter ρ′.5 Write an = cnQ(1−k/n) and

let lim
n→∞

cn = 1. If provided k
1
2A0(Q(1− k/n))→ 0, we have

√
k

(k/n)ηQ(1− k/n)

{
µ̂EV Tη,cnXn−k:n

−Hη,an [X]
}

d−→ N(0,
γ4

(η − γ)2 )

where

A0(t) =

{
ρ′
[
1− lim

s→∞
sη/γ−1G(s)/(tη/γ−1G(t))

]
, ρ′ < 0

1−
∫ t

0 s
η/γ−1G(s)ds/(tη/γG(t)) , ρ′ = 0

To be consistent with the formulation of Theorem 2, we develop following corollary.

Corollary 1.

√
n

σ2
η(k/n)

{
µ̂EV Tη,cnXn−k:n

−Hη,an [X]
}

d−→
{

0 if γY = γ + 1− η 6 1/2
N(0, σ̃2

η,γ) if γY = γ + 1− η > 1/2

where

σ̃2
η,γ =

γ2(γ + 1− η)(γ + 1/2− η)

η2(η − γ)2

The consistency of the extreme estimators then immediately follows from their asymptotic nor-

mality under corresponding conditions.

5The first-order condition can be easily verified by applying Karamata’s Theorem (de Haan and Ferreira 2006)
and Lemma 1.
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Chapter 5

Simulation Study

In this chapter, we carry out a simulation study to compare the performance of different estima-

tion approaches for heavy-tailed losses. We take the distortion index η = 0.8 for computation of

PH-premium. Our sample size is N=1000 and , for each distribution, we simulate in total S=100

scenarios. For the actual loss distribution, we have chosen Fréchet distribution and Burr distribu-

tion. For comparison with parametric estimators, we fit a wide range of distribution, including the

true distribution and many other artificial distributions, to my observations. Table 5.1 shows the

details of the setting of distribution used in the simulation study.

Table 5.1: Distributions used in simulation study

Distribution γ ρ

γ > 0 • Fréchet F (x) = exp(−x−1/γ), x > 0, with γ ∈ {0.6,0.2} γ -1

• Burr F (x) = 1− (x−ρ/γ + 1)1/ρ, x ≥ 0, with (γ, ρ) ∈ {(0.6,-1),(0.2,-2)} γ ρ
• GPD with shape γ and scale σ=1 γ −∞

γ = 0 • Exponential distribution 0 −∞
• Gamma distribution 0
• Weibull distribution 0 -1
• Lognormal distribution 0 0

The simulation study consists of two parallel parts, one for regular insurance and the other for

excess-of-loss reinsurance. In each part, we examine the optimal choice of k for Hill estimators and

compare the extreme estimators with other estimators. For (high) retention levels of excess-of-loss

reinsurance, we use the 0.9 and 0.99 quantiles of actual loss distribution.
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5.1 Regular Insurance

5.1.1 The Choice of k
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Figure 5.1: Fréchet Distribution,γ=0.6
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Figure 5.2: Fréchet Distribution,γ=0.2
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Figure 5.3: Burr Distribution,γ=0.6,ρ = −1
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Figure 5.4: Burr Distribution,γ=0.2,ρ = −2

Generally speaking, the second-order coefficient ρ ≤ 0 controls the convergent rate of k. When ρ is

getting smaller, we can take a larger portion of sample size as k, which can be clear seem in figure
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4.4. In figure 4.4 we have a relative high ρ and we observe that the performance of the extreme

estimators are very stable over a relative large range of k. When ρ is relative large, the performance

of our extremes estimator seems to depend on extreme value index γ of losses. For larger γ, the

optimal choice of k tend to be smaller.

5.1.2 Empirical vs EVT Estimators

Figure 5.5: PH-Mean: Empirical vs EVT Estimators
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(b) Fréchet: γ=0.2

0

1

2

3

4

5

6

7

Emp. EVT

Empirical vs EVT Estimators on PH−Mean
[ Burr distribution ]

(γ=0.6,η=0.8,ρ=−1,PH−Mean=3.5233)
N=1000,S=100,k=40

(c) Burr: (γ, ρ)=(0.6,-1)
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(d) Burr: (γ, ρ)=(0.2,-2)

A clear message delivered by these four figures is that: empirical estimators may result in a ter-

rifically poor estimation when we are dealing with heavy-tailed losses. On the other hand, the

extremes estimator shows robust performance over different heaviness of losses. While the tail of

losses is not so heavy, both empirical and extremes estimator has similar behavior, which is in line

with Remark 2 in Theorem 2.
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5.1.3 Parametric vs Semi-parametric Approach

Figure 5.6: Parametric vs Semi-parametric Methods: PH-Mean
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(b) Fréchet: γ=0.2
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(c) Burr: (γ, ρ)=(0.6,-1)
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(d) Burr: (γ, ρ)=(0.2,-2)

In this section, we compare the extremes estimators with parametric estimators based on a variety of

models. Parametric always shows the best performance but only if we have the proper identification

of the loss distribution. Losses with positive extreme value index can hardly be approximated

by other distributions with zero or even positive extreme value index. Nevertheless, in certain

circumstances it is still possible to approximate by another similar distribution. For example,

in the graphs on the right side, generalize pareto distribution may also be a suitable model for

estimating PH-premiums. The boxplot of Frechet distribution in left downside figure is missing

because the maximum likelihood estimators cannot be obtained properly.
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5.2 Excess-of-Loss Reinsurance

5.2.1 The Choice of k

Figure 5.7: Fréchet Distribution:γ=0.6
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Figure 5.8: Fréchet Distribution:γ=0.2
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Figure 5.9: Burr Distribution:(γ, ρ)=(0.6,-1)
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Figure 5.10: Burr Distribution:(γ, ρ)=(0.2,-2)
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Similar observations as in section 5.2.1 are found. Accordingly we have a similar interpretation for

the choice of k in case of pricing Excess-of-Loss Reinsurance.
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5.2.2 Empirical vs EVT Estimators

Figure 5.11: Excess-of-Loss Reinsurance: Empirical vs EVT Estimators
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(b) Fréchet :γ=0.2

Figure 5.12: Excess-of-Loss Reinsurance: Empirical vs EVT Estimators
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(a) Burr:(γ, ρ)=(0.6,-1)
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(b) Burr:(γ, ρ)=(0.2,-2)

Similar results as those in section 5.1.2 are observed. In case of losses with strong heaviness, our

extremes estimator obviously outperforms to empirical ones in my simulation. It may due to that

empirical estimators fail to recognize the asymptotic behavior of large losses. When Y lies in the

sum domain of attraction of normal distribution, i.e. when γ + 1− η < 1/2 both estimators show

comparable behaviors.
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5.2.3 Parametric and Semi-parametric Approach

Figure 5.13: Excess-of-Loss Reinsurance: a = x0.99 vs a = x0.9
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Figure 5.14: Excess-of-Loss Reinsurance: a = x0.99 vs a = x0.9
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0.015
0.02

0.025
0.03

0.035
0.04

EVT FRE Burr GPD GAM WBL EXP LogN

EVT Estimation vs. Parametric Estimation on EoL Reinsurance
[ Burr distribution ]

(=0.2,=0.8,=-2,a=x0.99=2.5119,True Premium=0.021033)
N=1000,S=100,k=200

0.05

0.1

0.15

EVT FRE Burr GPD GAM WBL EXP LogN

EVT Estimation vs. Parametric Estimation on EoL Reinsurance
[ Burr distribution ]

(=0.2,=0.8,=-2,a=x0.9=1.5833,True Premium=0.083904)
N=1000,S=100,k=280

(b) Burr: (γ, ρ)=(0.2,-2)

Extremes estimators always provide reliable estimates in these scenarios. A critical remark is

that even if we have correctly identify the loss distribution, the parametric estimators still shows

poor performance when the retention level is high.high. This is because in above cases we have

lim
a→∞

d log[1−Fθ(a)]
dθ = ∞, which means the relative error asymptotic variance for the MLEs is very

large if retention level is high.1 This problem is particularly serious if the heaviness of losses

is relatively low. The boxplots of Fréchet distribution are missing in the some figures of Burr

1Please refer to the end of Chapter 2 for detailed explanation.
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distribution because the maximum likelihood estimator of parameters had not been properly found.
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Chapter 6

Conclusion

In this thesis, we discuss three different types of estimators of the proportional hazards premium

for regular insurance and excess-of-loss reinsurance: maximum likelihood, empirical and extreme

estimators. Particularly, we investigate the asymptotic behavior and consistency of all these esti-

mation procedures. A simulation study is carried out to compare the their performance within a

limited sample size.

The simulation conclusion is consistent with the theoretic findings. It suggests that extremes

estimators always shows promising performance under a variety of circumstances in simulation. The

advantage of the extremes estimators is particularly significant if the heaviness of loss distribution is

strong, or if we want to price an excess-of-loss reinsurance with high retention level. When γ+1−η

is large, the empirical estimators fail to produce satisfactory results. When γ + 1− η is small, the

empirical estimators and extreme estimators are similar. No surprise that parametric methods

usually give best estimations if we have suitable identification of loss distribution. However, if

we are pricing excess-of-loss insurance with high retention level, the performance of parametric

methods can still be poor and much worse than extreme estimators, even though we have correct

identification of loss distribution. Moreover, the simulation analysis in Chapter 4 clearly suggests

that, if misidentification error is present, we can hardly obtain satisfactory results by MLEs.

The asymptotic normality of the extreme estimators is the highlight of this thesis. We have made

a strong generalization of the statements made by Peng (2001) and Necir and Meraghni (2009).

The statement from Peng (2001) can only apply to a particular case η = 1. The work of Necir

and Meraghni (2009) is much more general but still limited in the cases γ > 1/2. Here, we make a

significant contribution to this field by providing a general theorem that apply to all η and γ such

that 1 ≥ η > γ. Still, many topics are possible for future study. For example, the condition about

continuously differentiability of quantile function Q in Theorem 2 may be eliminated. Moreover, the

conditions in Theorem 3 about the convergence rate of k may be simplified since we do not detect

transparent additional requirements for selection of k for excess-of-loss reinsurance, compared to
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regular insurance, in the simulation outcome. It is also an open question about the asymptotic

behavior of the difference between the extremes estimators and empirical estimators if γY ≥ 1/2.
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Chapter 7

Appendix

In this Appendix, we give the details of proofs for all the theorems mentioned above.

7.1 Proof of Theorem 1

Before we go the the proof of Theorem 1, we first introduce the definition of (first-order) regularly

varying function and a lemma used in the proof.

Definition 5. A function h > 0 is called regularly varying with index ρ, or called ρ− varying, if

lim
t→∞

h(tx)

h(t)
= xρ, x > 0

Lemma 2. (N.H.Bingham and J.L.Teugels 1975)Given a function h > 0 that is regularly varying

with index ρ > 0,then its inverse h−1 ,if exists, is regularly varying with index ρ−1.

1. Let x1, x2 ∈ [0,∞) and x1 < x2. Then, if 1 ≥ η > 0

F (x1) 6 F (x2) < 1⇒ 1− F (x1) > 1− F (x2) > 0⇒ 0 < [1− F (x1)]η−1 6 [1− F (x2)]η−1

Jη(x1) = ηx1[1− F (x1)]η−1 < ηx2[1− F (x1)]η−1 6 ηx2[1− F (x2)]η−1 = Jη(x2)

This proves function Jη(x) is strictly increasing therefore is invertible.

2.

E(Y ) = E(Jη(X)) =

∫ ∞
0

Jη(x)dF (x) =

∫ ∞
0

xη[1− F (x)]η−1dF (x) = −
∫ ∞

0
xd[1− F (x)]η

= −
∫ ∞

0

(∫ x

0
1dt

)
d[1− F (x)]η = −

∫ ∞
0

(∫ ∞
t

1d[1− F (x)]η
)
dt = −

∫ ∞
0

(−[1− F (t)]η)dt

=

∫ ∞
0

([1− F (t)]η)dt = Hη[X]

28



3.

lim
t→∞

Jη(tx)

Jη(t)
= lim

t→∞

(
ηtx

[1− F (tx)]1−η
· [1− F (t)]1−η

ηt

)
= lim

t→∞

(
x ·
(

1− F (tx)

1− F (t)

)η−1
)

= x ·
(

lim
t→∞

1− F (tx)

1− F (t)

)η−1

= x
1− η−1

γ = x
γ+1−η
γ

It means function Jη(x) is γ+1−η
γ − varying. From property 1 we know function Jη(·) is

invertible. Denote its inverse be Kη(x) : [0,∞) → R. By lemma 2, we know function Kη(x)

is γ
γ+1−η − varying, i.e.,

lim
t→∞

Kη(tx)

Kη(t)
= x

γ
γ+1−η

The distribution function of random variable Y is

FY (x) = P[Y 6 x] = P [Jη(X) 6 x] = P [X 6 Kη(x)] = F (Kη(x))

Since function Kη is inverse Jη,

x = Jη(Kη(x)) =
ηKη(x)

[1− F (Kη(x))]1−η
⇒ 1− FY (x) = 1− F (Kη(x)) =

(
ηKη(x)

x

) 1
1−η

Subsequently,

lim
t→∞

1− FY (tx)

1− FY (t)
= lim

t→∞

[(
ηKη(tx)

tx

) 1
1−η
(

t

ηKη(t)

) 1
1−η
]

= lim
t→∞

(
Kη(tx)

Kη(t)
x−1

) 1
1−η

=

(
x−1 · lim

t→∞

Kη(tx)

Kη(t)

) 1
1−η

= x

(
−1+ γ

γ+1−η

)
· 1
1−η = x

− 1
γ+1−η

This proves Y is heavy-tailed with extreme value index γY = γ + 1− η from lemma 1.

4. This property is immediately true by applying this fact (de Haan and Ferreira 2006): given a

loss Y with extreme value index γ + 1− η > 0 then E[Y r] <∞ if r > 1
γ+1−η and E[Y r] =∞

if r > 1
γ+1−η .

5. From above we know function Jη is strictly increasing,i.e. EVT-transform is monotonic,

thereby obviously the p-quantile of random variable Y

yp = Jη(xp) = (1− p)η−1ηxp

where xp is the p-quantile of random variable X.
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6.
E[(Jη(X)− Jη(a))+]

=

∫ ∞
a

(
ηx

[1− F (x)]1−η
− ηa

[1− F (a)]1−η

)
dF (x)

= −
∫ ∞
a

(
x− a[1− F (x)]1−η

[1− F (a)]1−η

)
d[1− F (x)]η

= −
∫ ∞
a

(
x− a− a

[1− F (a)]1−η
([1− F (x)]1−η − [1− F (a)]1−η)

)
d[1− F (x)]η

= −
∫ ∞
a

(∫ x

a

{
1− a

[1− F (a)]1−η
d[1− F (t)]1−η

dt

}
dt

)
d[1− F (x)]η

= −
∫ ∞
a

(∫ ∞
t

{
1− a

[1− F (a)]1−η
d[1− F (t)]1−η

dt

}
d[1− F (x)]η

)
dt

= −
∫ ∞
a

({
1− a

[1− F (a)]1−η
d[1− F (t)]1−η

dt

}
(−[1− F (t)]η)

)
dt

=

∫ ∞
a

[1− F (t)]ηdt− a(1− η)

[1− F (a)]1−η

∫ ∞
a

[1− F (t)]η

1− η
d[1− F (t)]1−η

=

∫ ∞
a

[1− F (t)]ηdt− a(1− η)

[1− F (a)]1−η

∫ ∞
a

d[1− F (t)]

=

∫ ∞
a

[1− F (t)]ηdt+ a(1− η)[1− F (a)]η

�

7.2 Proof of Theorem 2

We divide the proof of Theorem 2 into three distinct cases: γY < 1/2, γY = 1/2 and γY > 1/2.

Before the main body of the proof, we first give a lemma that is used in the latter two cases.

Lemma 3. Let F be a distribution function satisfying the assumptions in Theorem 2 with γ > η− 1
2 ,

i.e., γY = γ + 1− η > 1
2 . We have

lim
s↓0

s2η−1Q2(1− s)
σ2
η(s)

=
(γ + 1− η)(γ + 1/2− η)

η2γ2
=
γY (γY − 1/2)

η2γ2

Proof: See the proof of Lemma 2 in Necir and Meraghni (2009). Please note that we have

weaker assumptions than A.Necir et al. (2009)(Necir and Meraghni 2009). However, it’s clear that

both Lemma 1 and Lemma 2 in Necir and Meraghni (2009) can easily extended to prove our lemma.

7.2.1 Case 1: γY < 1
2

Let γY = γ+ 1−η < 1
2 . Then it immediately follows that η > 1

2 > γ and 1
γX

> 2
2η−1 because γ > 0

and 0 < η ≤ 1. We first want to prove

√
n(µ̂EV Tη −Hη[X])

d−→ N(0, σ2
η) (7.1)
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where

σ2
η = η2

1∫
0

1∫
0

(min(s, t)− st)sη−1tη−1dQ(1− s)dQ(1− t) <∞

Recall

µ̂EMP
η =

n∑
i=1

[(
n+ 1− i

n

)η
−
(
n− i
n

)η]
Xi:n

By Theorem 3.2 in Jones and Zitikis (2003), we have

√
n(µ̂EMP

η −Hη[X])
d−→ N(0, σ2

η)

To prove (7.1),it suffice to show
√
n(µ̂EMP

η − µ̂EV Tη )
d−→ 0

Notice that

µ̂EMP
η − µ̂EV Tη =

k∑
i=1

(
i

n

)η
(Xn−i+1 −Xn−i)−

(
k

n

)η
Xn−k:n

γ̂k
η − γ̂k

=: I1 − I2

And by Theorem 1 and Theorem 2 in Necir, Meraghni and Meddi (2007), we have

(
k

n

)−η √
k

Xn−k:n

I1 −
∞∫

Q(1− k
n)

[1− F (x)]ηdx

 d−→ N(0, σ2
1)

(
k

n

)−η √
k

Xn−k:n

I2 −
∞∫

Q(1− k
n)

[1− F (x)]ηdx

 d−→ N(0, σ2
2)

where σ2
1 < ∞ and σ2

2 < ∞ Write Q(1 − 1
u) = uγ

X
L(u) with L a slowly varying function. Then

sγ
Y − 1

2L(s) regular varying with exponent γY − 1
2 < 0. It implies

lim
s→∞

sγ
Y − 1

2L(s) = lim
n→∞

(n
k

)γY − 1
2
L
(n
k

)
= 0

by Proposition B.1.9 in de Haan and Ferreira (2006). On the other hand, from the proof of corollary

in A.Necir (2009),we have
Q (1− k/n)

Xn−k:n

p−→ 1
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Then, by Slutsky,

Xn−k:n

Q (1− k/n)

(n
k

)γY − 1
2
L(
n

k
)

(
k

n

)−η √
k

Xn−k:n

I1 −
∞∫

Q(1− k
n)

[1− F (x)]ηdx


=

1

(n/k)γ
X
L(n/k)

(n
k

)γX−η+ 1
2

(
k

n

)−η+ 1
2√

n

I1 −
∞∫

Q(1− k
n)

[1− F (x)]ηdx


=
√
n

I1 −
∞∫

Q(1− k
n)

[1− F (x)]ηdx


d−→ 1 · 0 ·N(0, σ2

1) = 0

Similarly, we also have

√
n

I2 −
∞∫

Q(1− k
n)

[1− F (x)]ηdx

 d−→ 1 · 0 ·N(0, σ2
2) = 0

Then we have

√
n
(

Π̂η,n − µ̂EV Tη

)
=
√
n (I1 − I2) =

√
n

I1 −
∞∫

Q(1− k
n)

[1− F (x)]ηdx

−
√
n

I2 −
∞∫

Q(1− k
n)

[1− F (x)]ηdx


d−→ 0− 0 = 0

This proves that (7.1) is true, that is

√
n

ση(k/n)
(µ̂EV Tη −Hη[X])

d−→ 1

ση
N(0, σ2

η) = N(0, 1)

since ση(k/n)→ ση(0) = ση <∞

7.2.2 Case 2: γY > 1
2

Notice that

µ̂EV Tη =
1

nη

n−k∑
i=1

Xi:n[(n− i+ 1)η − (n− i)η] +

(
k

n

)η
Xn−k:n

η

η − γ̂k

=
1

nη

n−k∑
i=1

Xi:n[(n− i+ 1)η − (n− i)η] +

(
k

n

)η
Xn−k:n

γ̂k
η − γ̂k

+

(
k

n

)η
Xn−k:n: = Π

(n)
3 + Π

(n)
2 + Π

(n)
1

and

Hη[X] =

∫ ∞
0

[1− F (s)]ηds =

∫ 0

1
sηd(Q(1− s)) = −

∫ k/n

0
sηd(Q(1− s))−

∫ 1

k/n
sηd(Q(1− s))
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Integrating the second term by parts yields

Hη[X] = η

∫ 1

k/n
sη−1Q(1− s)ds−

∫ k/n

0
sηd(Q(1− s)) +

(
k

n

)η
Q(1− k/n) := Π3 + Π2 + Π1

Necir et al. (2007) have shown that under the assumptions of Theorem 3, there exists a sequence

of Brownian bridges {Bn(s), 0 ≤ 0 ≤ 1}n∈N such that, for all sufficiently large n,

√
n

(k/n)η−1/2Q(1− k/n)

(
Π

(n)
1 −Π1

)
= γ

(
k

n

)−1/2

Bn

(
1− k

n

)
+ op(1) (7.2)

and
√
n

(k/n)η−1/2Q(1− k/n)

(
Π

(n)
2 −Π2

)
=

γ

(η − γ)2 (ηγ − γ2 + η)

(
k

n

)−1/2

Bn

(
1− k

n

)
− ηγ

(η − γ)2

(
k

n

)1/2 ∫ 1

1−k/n

Bn(s)

1− s
ds

(7.3)

Then we need to evaluate, for all large n,

√
n

(k/n)η−1/2Q(1− k/n)

(
Π

(n)
3 −Π3

)
Necir and Meraghni (2009) shows that

Π
(n)
3 −Π3 = Sn1 + Sn2

with

Sn1 = η

∫ 1−1/n

k/n
sη−1(Qn(1− s)−Q(1− s))ds

Sn2 = (1− (1− 1/n)η)X1:n − η
∫ 1

1−1/n
sη−1Q(1− s)ds

First, we show that, for all large n,

√
n

(k/n)η−1/2Q(1− k/n)
Sn2 = op(1) (7.4)

We have

(k/n)η−1/2Q(1−k/n) = (k/n)η−1/2(k/n)−γL(n/k) = (n/k)γ−η+1/2L(n/k) = (n/k)γ
Y −1/2L(n/k)→∞

by Proposition B.1.9 in de Haan and Ferreira (2006) since function sγ
Y −1/2L(s) is regularly

varying with index γY − 1/2 > 0. To prove (7.4),it suffice to show
√
nSn2

p−→ 0.

Note that
√
nX1:n has same distribution as

√
nQ(ξ1:n) where ξ1:n is the minimum of n samples

drawn from uniform distribution on [0,1). Since
√
nξ1:n

d−→ 0 and Q is continuously differentiable

with Q(0)=0, by delta method, we have
√
n(Q(ξ1:n)−Q(0))

d−→ 0 ·Q′(0) = 0. Thereby, for 1 ≥ η > 0
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√
n(1− (1− 1/n)η)X1:n = [(1− (1− 1/n)η)]

√
nX1:n

d−→ [1− (1− 0)η] · 0 = 0 (7.5)

On the other hand,

0 6
√
nη

∫ 1

1−1/n
sη−1Q(1− s)ds 6

√
nη

∫ 1

1−1/n

(
1− 1

n

)η−1

Q

(
1

n

)
ds 6

1√
n
η

(
1− 1

n

)η−1

Q

(
1

n

)
since function sη−1Q(1− s) is decreasing on (0,1]. We have

1√
n
η

(
1− 1

n

)η−1

Q

(
1

n

)
→ 0 · η(1− 0)η−1Q(0) = 0

consequently,
√
nη

∫ 1

1−1/n
sη−1Q(1− s)ds→ 0 (7.6)

From (7.5),(7.6), we know
√
nSn2

p−→ 0. This complete the proof of (7.4). Next, we derive the

asymptotic behavior of √
n

(k/n)η−1/2Q(1− k/n)
Sn1

Necir and Meraghni (2009) have shown that

√
n

(k/n)η−1/2Q(1− k/n)
Sn1 = −

η
∫ 1−1/n
k/n sη−1Bn(1− S)Q′(1− s)ds

(k/n)η−1/2Q(1− k/n)
+ op(1) (7.7)

Recall that, E[(Bn(s))2] = [(1− s)s] 6 1
4 , for any 0 < s < 1. By Jensen’s inequality, for each n ∈ N

we get, for any 0 < s < 1,

E(|Bn(1− s)|) 6
√
E[(Bn(1− s))2] 6

1

2

then for all large n we have

E

(∣∣∣∣∣
∫ 1

1−1/n
sη−1Bn(1− S)Q′(1− s)ds

∣∣∣∣∣
)
6
∫ 1

1−1/n
sη−1E[|Bn(1− S)|]

∣∣Q′(1− s)∣∣ ds
6
∫ 1

1−1/n
sη−1 1

2

∣∣Q′(1− s)∣∣ ds 6 ∫ 1

1−1/n

(
1− 1

n

)η−1 1

2

∣∣Q′(1− s)∣∣ ds
=

(
1− 1

n

)η−1 1

2

∫ 1

1−1/n

∣∣Q′(1− s)∣∣ ds = −
(

1− 1

n

)η−1 1

2

∫ 1

1−1/n
Q′(1− s)ds

=

(
1− 1

n

)η−1 1

2

[
Q

(
1

n

)
−Q(0)

]
The function Q is continuous on [0,1), then Q( 1

n)→ Q(0) = 0 as n→∞. Hence(
1− 1

n

)η−1 1

2

[
Q

(
1

n

)
−Q(0)

]
→ (1− 0)η−1 1

2
[Q(0)−Q(0)] = 0
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consequently, ∫ 1

1−1/n
sη−1Bn(1− S)Q′(1− s)ds = op(1) (7.8)

From (7.7) and (7.8)

−
η
∫ 1
k/n s

η−1Bn(1− S)Q′(1− s)ds

(k/n)η−1/2Q(1− k/n)
+ op(1)

together with (7.4), it implies that

√
n

(k/n)η−1/2Q(1− k/n)

(
Π

(n)
3 −Π3

)
= −

η
∫ 1
k/n s

η−1Bn(1− S)Q′(1− s)ds

(k/n)η−1/2Q(1− k/n)
+ op(1) (7.9)

Eventually, (7.2),(7.3) and (7.9) yield that, for all large n,

√
n

(k/n)η−1/2Q(1− k/n)

(
µ̂EV Tη −Hη[X]

)
=

√
n

(k/n)η−1/2Q(1− k/n)

(
3∑
i=1

Π
(n)
i −

3∑
i=1

Πi

)
= ∆n(η, γ)+op(1)

where

∆n(η, γ) =
ηγ

(η − γ)2 (η − γ + 1)

(
k

n

)−1/2

Bn

(
1− k

n

)
− ηγ

(η − γ)2

(
k

n

)1/2 ∫ 1

1−k/n

Bn(s)

1− s
ds

−
η
∫ 1
k/n s

η−1Bn(1− s)Q′(1− s)ds

(k/n)η−1/2Q(1− k/n)

Necir and Meraghni (2009) have shown that ∆n(η, γ) is a Gaussian random variable with mean

zero and variance

σ2
∆ + o(1) =

η2γ2[(η − γ)2 + 1]

(η − γ)4 +
[4(η − γ)− 1]η2γ2

(γ + 1− η)[2γ + 1− 2η](η − γ)
+ o(1)

This implies that, under assumptions of theorem 3,

√
n

(k/n)η−1/2Q(1− k/n)

(
µ̂EV Tη −Hη[X]

) d−→ N(0, σ2
∆) (7.10)

By Lemma 3, we know

√
n

ση(k/n)

(
µ̂EV Tη −Hη[X]

)
=

(k/n)η−1/2Q(1− k/n)

ση(k/n)

√
n

(k/n)η−1/2Q(1− k/n)

(
µ̂EV Tη −Hη[X]

) d−→ N(0, σ2
η,γ)

where

σ2
η,γ =

(γ + 1− η)(γ + 1/2− η)

η2γ2

[
η2γ2[(η − γ)2 + 1]

(η − γ)4 +
[4(η − γ)− 1]η2γ2

(γ + 1− η)[2γ + 1− 2η](η − γ)

]

=
(γ + 1− η)(γ + 1/2− η)[(η − γ)2 + 1]

(η − γ)4 +
[4(η − γ)− 1]

2(η − γ)
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7.2.3 Case 3: γY = 1/2

Suppose now γY = 1/2. Then from Lemma 3, we have, as n→∞

(k/n)2η−1Q2(1− k/n)

σ2
η(k/n)

→ 0

consequently, from (7.2) and (7.3), by Slutsky’s Theorem,we get

√
n

ση(k/n)

(
Π

(n)
1 −Π1

)
=

(k/n)η−1/2Q(1− k/n)

ση(k/n)

√
n

(k/n)η−1/2Q(1− k/n)

(
Π

(n)
1 −Π1

)
d−→ 0 (7.11)

and

√
n

ση(k/n)

(
Π

(n)
2 −Π2

)
=

(k/n)η−1/2Q(1− k/n)

ση(k/n)

√
n

(k/n)η−1/2Q(1− k/n)

(
Π

(n)
2 −Π2

)
d−→ 0 (7.12)

Moreover, from above, we also have, for all large n,

√
n

ση(k/n)

(
Π

(n)
3 −Π3

)
=

(k/n)η−1/2Q(1− k/n)

ση(k/n)

√
n

(k/n)η−1/2Q(1− k/n)

(
Π

(n)
3 −Π3

)
=

√
n

ση(k/n)
Sn2 −

(k/n)η−1/2Q(1− k/n)

ση(k/n)

η
∫ 1−1/n
k/n sη−1Bn(1− s)Q′(1− s)ds

(k/n)η−1/2Q(1− k/n)
+ o(1) · op(1)

= −
η
∫ 1
k/n s

η−1Bn(1− s)Q′(1− s)ds
ση(k/n)

+ op(1)

(7.13)

since
√
nSn2 = op(1) ,

∫ 1
1−1/n s

η−1Bn(1− s)Q′(1− s)ds = op(1) and ση(k/n)→ ση ∈ (0,∞].

Finally, (7.11), (7.12) and (7.13) yields

√
n

ση(k/n)

(
µ̂EV Tη −Hη[X]

)
=

√
n

ση(k/n)

(
3∑
i=1

Π
(n)
i −

3∑
i=1

Πi

)
= ∆∗n(η, γ) + op(1)

where

∆∗n(η, γ) = −
η
∫ 1
k/n s

η−1Bn(1− s)Q′(1− s)ds
ση(k/n)

=
η
∫ 1
k/n s

η−1Bn(1− s)dQ(1− s)
ση(k/n)

It is clear that ∆∗n(η, γ) is a Gaussian random variable with mean zero and variance

E[∆∗n(η, γ)]2 =

{
η2

∫ 1

k/n

∫ 1

k/n
[min(s, t)− st]sη−1tη−1dQ(1− s)dQ(1− t)/σ2

η(k/n)

}
= σ2

η(k/n)/σ2
η(k/n) + o(1) = 1

This proves that √
n

ση(k/n)

(
µ̂EV Tη −Hη[X]

) d−→ N(0, 1)

�
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7.3 Proof of Theorem 4

Write

µ̂EV Tη,cnXn−k:n
−Hη,cnQ(1−k/n)[X] = c

− η
γ̂k

+1

n

(
k

n

)η
Xn−k:n

γ̂k
η − γ̂k

−G(cnQ(1− k/n))

Then √
k

(k/n)ηQ(1− k/n)

{
µ̂EV Tη,cnXn−k:n

−Hη,cnQ(1−k/n)[X]
}

=

√
k

(k/n)ηQ(1− k/n)

{
c
− η
γ̂k

+1

n

(
k

n

)η
Xn−k:n

γ̂k
η − γ̂k

− c
− η
γ̂k

+1

n G(Q(1− k/n))

}
+

√
k

(k/n)ηQ(1− k/n)

{
c
− η
γ̂k

+1

n G(Q(1− k/n))− c
− η
γ

+1
n G(Q(1− k/n))

}
+

√
k

(k/n)ηQ(1− k/n)

{
c
− η
γ

+1
n G(Q(1− k/n))−G(cnQ(1− k/n))

}
:= Ξ1 + Ξ2 + Ξ3

Note that

Ξ1 = c
− η
γ̂k

+1

n

√
k

(k/n)ηQ(1− k/n)

{(
k

n

)η
Xn−k:n

γ̂k
η − γ̂k

−
∫ ∞
Q(1−k/n)

[1− F (t)]ηdt

}
d−→ 1
− η
γ

+1 ·N(0, σ̃2
η,γ) = N(0, σ̃2

η,γ)

by applying the Theorem 2 in Necir et al. (2007). It’s suffice now to prove

Ξ2
d−→ 0 and Ξ3

d−→ 0 (7.14)

Write

Ξ2 =

∫∞
Q(1−k/n) [1− F (t)]ηdt

(k/n)ηQ(1− k/n)

√
k

{
c
− η
γ̂k

+1

n − c
− η
γ

+1
n

}
and

Ξ3 =

∫∞
Q(1−k/n) [1− F (t)]ηdt

(k/n)ηQ(1− k/n)

√
k

{
c
− η
γ

+1
n − G(cnQ(1− k/n))

G(Q(1− k/n))

}
Recall, from Karamata’s Theorem, that∫∞

Q(1−k/n) [1− F (t)]ηdt

(k/n)ηQ(1− k/n)
→ 1

η/γ − 1
=

γ

η − γ
, as n→∞

since function[1− F (t)]η is regular varying with index − η
γ < −1 and Q(1− k/n)→∞ as n→∞.

Now it’s suffice to prove
√
k

{
c
− η
γ̂k

+1

n − c
− η
γ

+1
n

}
d−→ 0 , as n→∞ (7.15)

√
k

{
c
− η
γ

+1
n − G(cnQ(1− k/n))

G(Q(1− k/n))

}
d−→ 0 , as n→∞ (7.16)
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We First prove (7.16).From Theorem 2.3.9 in de Haan and Ferreira (2006), we have, for any ε,δ ¿0,

there exists M0 such that for all n > M0∣∣∣∣∣∣
c
− η
γ

+1
n − G(cnQ(1−k/n))

G(Q(1−k/n))

A0(Q(1− k/n))
− c
− η
γ

+1
n

cρ
′
n − 1

ρ′

∣∣∣∣∣∣ 6 εc−
η
γ

+1+ρ′

n max(cδn, c
−δ
n )

that is,
√
kA0(Q(1− k/n))

{
c
− η
γ

+1
n

cρ
′
n − 1

ρ′
− εc

− η
γ

+1+ρ′

n max(cδn, c
−δ
n )

}

6
√
k

{
c
− η
γ

+1
n − G(cnQ(1− k/n))

G(Q(1− k/n))

}
6
√
kA0(Q(1− k/n))

{
c
− η
γ

+1
n

cρ
′
n − 1

ρ′
+ εc

− η
γ

+1+ρ′

n max(cδn, c
−δ
n )

} (7.17)

It is clear that, for some c

c
− η
γ

+1
n

cρn − 1

ρ
→ 0 and εc

− η
γ

+1+ρ
n max(cδn, c

−δ
n )→ c <∞

since cn → 1 as n→∞. Moreover, from the condition of Theorem 4 we know
√
kA0(Q(1−k/n)) =

o(1) for all large n. Consequently, both upper bound and lower bound in (7.17) converge to 0 if

n → ∞. This proves (7.16). Next, we consider (7.15). By Mean-Value Theorem, there exists ξn

between γ̂k and γ such that

c
− η
γ̂k

+1

n − c
− η
γ

+1
n =

η

ξ2
n

c
− η
ξn

+1
n log(cn){γ̂k − γ}

Hence,

√
k

{
c
− η
γ̂k

+1

n − c
− η
γ

+1
n

}
=

η

ξ2
n

c
− η
ξn

+1
n log(cn)

√
k{γ̂k − γ}

d−→ η

γ2
1
− η
γ

+1 · 0 ·N(0, γ2) = 0

by applying the consistency and asymptotic normality of Hill estimator in Theorem 1. �
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