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Chapter 1

Introduction and Overview

This thesis is inspired by the developments over the last decades in pension schemes

worldwide and specifically in the Dutch pension system. In this introduction, I de-

scribe these developments as they have unfolded in the Netherlands, although the

general trends in terms of demography and financial markets that will be discussed

hold on a worldwide scale.

In the Netherlands, the pension system is organized in three different parts, or ’pil-

lars’ as they are usually referred to. The first pillar, the AOW, is state sponsored

and is intended to prevent old-age poverty. The level of the first pillar pension in-

come depends only on years of residence and on marital status and is such that an

individual without any additional pension income will be above the subsistence level.

The second pillar of pension income provision is the occupational pension. Ninety per-

cent of the Dutch employees are covered by some sort of second pillar pension scheme,

while participation in occupational pension schemes is obligatory for about 70% of the

employees. Finally, the third pillar consists of private additional savings for retirement.

The first pillar is financed on a pay-as-you-go (PAYG) basis, in such a way that the

currently active part of the population pays the contributions that are used to finance

the retirement benefits of the retirees. The second and third pillars are organised on

a funded basis. In the second pillar, employees and employers pay contributions to a

pension fund or insurance company that executes the occupational pension arrange-

ment offered by the employer to the employee. These contributions are part of the
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employment contract and can be considered to be deferred wage income. Third pillar

pensions consist of pension savings to provide additional retirement income - such as

a pension savings account, life insurance, etcetera - that individuals privately decide on.

Currently there is substantial debate around the design of the Dutch pension system.

The first driving force behind this debate is the changing demographic composition

of the population. Following the baby-boom just after the second World War, birth

rates have been declining steadily. At the same time, life expectancy has increased

substantially. Although the increasing longevity brings us much happiness, it can be

problematic for a pension system that is not designed to deal with it (see King (2004)

for some accessible illustrations of changes in life expectancy). The combination of

these two trends implies that, for a given retirement age, the fraction of the population

that is retired has been increasing relative to the fraction that is working. This increase

in the so-called dependency ratio is foreseen to continue over the next twenty to thirty

years. This has caused a debate on how to deal with these demographic changes: if the

retirement age remains fixed at its current level of 65 years, in the first pillar those of

working age will have to contribute an increasing share out of their labour income to

pay for the retirement benefits, while in the second pillar the same generations have to

increase their savings for retirement, or accept lower pension benefits. At the same time

questions arise on how to deal with the rapidly increasing life expectancy of current

retirees. During the period when they were saving for retirement, their contribution

levels were based on an expected length of life that is substantially lower than actual

length of life has turned out to be. Should benefits to these retirees be reduced or

should contributions by current workers be increased to cover the funding gap that

this unexpected longevity causes?

The second important issue is the impact of financial markets on the pension system.

After World War II, the amount of the second-pillar occupational pension savings has

been growing steadily. The occupational system has gradually transformed away from

a system in which most participants are in the working phase of their lives and annual

contributions paid into the system are relatively large compared to the total amount of
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assets. Slowly the system has evolved to a mature one, in which an increasing fraction

of the participants are close to or in the retirement phase of their lives and the total

amount of accumulated assets in the system is very large. Hence, annual contributions

into the system have become small compared to total assets. This implies that shocks

in the financial markets have increasingly large consequences for occupational pensions.

This increased sensitivity of the funded pension pillar to financial market shocks has

become very clear over the last 20 years, with periods of both fast growth in pension

assets and periods of rapid declines. These took place in particular during the dot-com

crisis of 2000-2002 and the financial crisis that started in 2008.

As a consequence of these developments, for some years a debate has been going on

about whether the Dutch pension system needs to be redesigned. Two reports were

commissioned by the Dutch government to analyse the situation and the sustainability

of the second pension pillar. The Frijns committee (2010) brought out a report on the

asset and risk management by pension funds, while the Goudswaard committee (2010)

analysed the sustainability of the system of occupational pensions. Both reports con-

vincingly show the need for structural reforms of the system. Subsequently, the social

partners and the Dutch government started negotiating the restructuring of both the

first and second pillar pensions. This resulted in an agreement on principles in the

summer of 2010. However, working out the details of the agreement has proved an

arduous process, and no definitive results have been reached yet.

Overview

In this thesis, I analyse the design of pension arrangements, paying particular attention

to the intergenerational risk sharing aspects of pension design. Chapters 2 and 3 deal

with the optimal design of multipillar pension arrangement when taking into account

multiple sorts of shocks and distortions. In these chapters, participation in the pension

system is taken for granted. Chapter 4 investigates the decision to participate in a

pension system, and the impact this has on pension arrangement design when partici-

pation is not mandatory. Chapter 5 performs a detailed analysis of some of the options

that have been considered in the redesign of the Dutch occupation pension contracts.
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Chapter 2 deals with optimal pension system design when taking into account the

labour supply decisions that individuals make. The central question of chapter 2 is:

’How should a two-pillar pension system - with a PAYG first pillar and a funded second

pillar - be designed when taking into account endogenous labour supply decisions’? In

this chapter, the sources of uncertainty are productivity and financial market risks.

In principle, the pension system designer would like to create the pension system in

such a way that these risks are shared optimally by the different generations. However,

the pension system may have distortionary effects. Here, the distortion concerns the

labour supply decision. Specifically, if the contribution to the pension system is linked

to the wage an employee earns, this lowers his net wage. This may induce the employee

to supply more or less labour than in the absence of the pension contribution. If all

employees face this same incentive, the resulting suboptimal aggregate labour supply

distorts wages, capital returns and national production and decreases welfare for all

individuals in the economy. This chapter shows that if such a distorting link from

individual pension contributions exists, the optimal response of the pension system

designer is to find an alternative way for the market economy to attain the socially

optimal allocation. The solution is to link the contributions to the second pillar to

the aggregate wage sum rather than the individual wage rate. This in fact imposes

a lump-sum contribution on the working generation, thereby evading the distortion,

while the risks inherent in wages can still be shared with the retired generation.

Chapter 3 also explores optimal pension system design, but from a very different per-

spective. In that chapter, instead of looking at behavioural distortions, uncertainty

about demographic developments is taken into account. Specifically, in addition to

the shocks of chapter 2 we include uncertainty about fertility and life expectancy (the

mortality rate). Hence, four fundamental sources of risk are present in the model.

Demographic uncertainty affects all macroeconomic relations. They are determinants

of the amount of labour supply, wages, capital returns, national income, private and

pension savings, the size of bequests and the relative size of transfers through the

PAYG first pillar. Even though the model is highly stylized, the presence of demo-



Introduction and Overview 5

graphic uncertainty renders it impossible to find constant pension system parameters

that produce the optimal degree risk sharing arrangement implemented by a social

planner. Therefore, a detailed numerical analysis is performed to determine how much

risk sharing can be achieved in a two-pillar pension system and how closely the market

economy combined with the pension arrangement can approximate the social planner’s

solution. It turns out that although the social planner solution can not be replicated,

an appropriately designed pension system with a defined-benefit second pillar results

in a very small welfare loss compared to the social planner’s solution. Obviously, an

open question is whether this finding is generalisable to a less stylised setting.

Chapter 4 deals explicitly with a very important aspect of collective pension arrange-

ments that was assumed to exist in chapters 2 and 3: obligatory participation in

collective arrangements. The question that chapter 4 poses is whether or under what

circumstances collective funded pension arrangements are sustainable when partici-

pation by new employees is not mandatory. It is well known that from an ex-ante

perspective collective pension arrangements can result in large welfare gains to par-

ticipants because of the risk-sharing they provide. However, new employees that are

required to enter into a collective arrangement may find that at the time of their entry,

the financial position of the arrangement is not very good. Thus, additional contri-

butions may be asked of them without corresponding additional entitlements being

awarded. This raises the question whether this particular generation would be better

off not entering into the collective arrangement and, if this is the case, whether it is

possible to design a pension arrangement such that it becomes attractive to this gener-

ation to enter, while preserving some of the risk-sharing benefits among participating

generations. The set-up is an infinite horizon model with two overlapping generations,

where the young generation can choose to join the existing pension arrangement or to

break the existing arrangement by saving for retirement privately. Once a young gen-

eration decides not to participate, the pension arrangement breaks down forever. The

challenge for the designer of the pension arrangement to design it in such a way that

the expected utility of joining is always at least equal to the expected utility of staying

out. Whether it is possible to design an arrangement that is attractive for new young
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generations depends both on the volatility of the shocks against which the collective

arrangement offers some protection (financial market risk in this case) and on the risk

aversion of the young generation. We demonstrate that the collective arrangement

breaks down when the volatility of the financial market shocks and risk aversion are

relatively low, while for intermediate values of these parameters the arrangement can

only be maintained if it provides less risk sharing than is socially optimal. In these

circumstances, optimal risk sharing can only be achieved by making participation in

the pension arrangement mandatory.

Finally, Chapter 5 is of direct importance for the current public debate about the

redesign of collective pension contracts in the Netherlands. As indicated before, sev-

eral options for redesigning the pension contract have been contemplated. The proposal

that initially garnered most support was the proposal of a ’combined contract’. Under

such a contract, pension entitlements would be split into a ’hard’ and a ’soft’ part,

where soft entitlements would form the flexible shell around hard entitlements that

would - in theory at least - be almost surely guaranteed. Chapter 5 performs a detailed

analysis of three different ways in which such a combined contract could be imple-

mented and it compares these three variants with pension results under the current

contract. In particular, the analysis provides insight into how shocks are distributed

across the current and future generations participating in the pension fund.

Under the first variant, accumulated entitlements are initially soft, but are con-

verted into hard entitlements after a fixed number of years. Under the second variant,

a fixed share of newly accrued entitlements are hard, while the remainder are soft.

Under the third variant, newly accumulated entitlements are soft. If the funding ratio

of the pension fund is sufficiently high, soft entitlements are transformed into hard

entitlements. Using an asset-liability management (ALM) model of the pension fund,

we simulate funding ratios, the degree of indexation awarded to both soft and hard

entitlements as well as reductions in hard and soft entitlements when funding ratios

become too low. The results show that under these new contracts, indexation is higher

and more readily awarded than under the current contract. Hence, under these pro-
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posals the pension fund’s assets tend to shrink more rapidly and the currently-retired

generations benefit at the expense of the current young and future generations. Of the

three new proposals, only the variant in which hard and soft entitlements are accrued

in a fixed proportion (the second variant) is able to effectively guarantee that ’hard’

entitlements indeed need to be reduced only in very rare circumstances. Moreover, un-

der the other two variants young generations hold almost all of the soft entitlements,

so that they bear almost all of the risk associated with the pension fund. This may

produce large intergenerational transfers. The results suggest that effective risk shar-

ing among all participants in the pension arrangement requires either all entitlements

to be of the same type, as is the case under the current contract, or all participants

to have an equal share of both types of entitlements, as is the case under the second

variant of the combined contract.





Chapter 2

Intergenerational risk sharing,

pensions and endogenous labour

supply in general equilibrium

There is a trend towards a greater degree of funding in pension systems in OECD

countries – see OECD (2011). In a number of countries, such as Chile, Denmark, the

Netherlands, the U.K. and the U.S., pension funds already play a prominent role in the

social security system. Anticipating the rising future costs of pension provision caused

by population aging, more countries are setting up or expanding their funded pension

pillars, often with mandatory participation. Examples of countries that have recently

moved towards more funding are Israel and Norway. This trend will have important

implications for the distribution of economic risks in society.

In this chapter the optimal design of two-tier pension systems in an overlapping

generations general equilibrium model with endogenous labor supply is explored. While

the first tier allows for both systematic redistribution and risk sharing between the

young and old generations, the second pillar only allows for potential intergenerational

risk sharing, as it is fully funded. Funded pension benefits can be of the defined

contribution (DC) type or of the defined benefit (DB) type. Under DC, the contribution

rate is fixed and the pension benefit is uncertain, while under DB the contribution rate

is stochastic and adjusts to guarantee a fixed benefit. Of the latter type, I shall explore

a defined real benefit (DRB) system, where the pension benefit is ex ante determined

This chapter is joint work with Roel Beetsma and Ward Romp and is forthcoming in the Scandi-
navian Journal of Economics.



10 Chapter 2

in real terms, and a defined wage-indexed benefit (DWB) system, where the benefit is

linked to the realized wage rate. With a DC fund, no risk sharing is possible through

the second pension pillar, because the entire value of the fund is paid out to the retired.

Hence, the social optimum cannot generally be replicated. With a DRB fund, optimal

risk sharing requires wage risks to be shared via the first pillar. However, this requires a

distortionary pension premium to be levied on wages, which, in turn, distorts the labor

supply. Hence, also with a DRB fund, the social optimum cannot generally be achieved.

The only system that enables the market economy to replicate the social optimum is a

properly designed DWB system. Such a system allows a complete separation between

systematic redistribution, which is the task of the first pillar, and optimal risk sharing,

which is the domain of the second pillar. This way, the labour supply is undistorted

and the first best can be mimicked.

Finding funded arrangements that minimise distortions in the labour market is

of particular relevance nowadays for countries that face substantial pension deficits,

while at the same time their labour forces are shrinking. In these circumstances, the

mentioned trend of moving from solely pay-as-you-go systems towards more funding is

to be welcomed. However, these new funded arrangements are usually of the DC type,

and in existing funded schemes there is a tendency to replace DB arrangements with DC

arrangements. This happened on a large scale in the U.K. and is starting to happen in

the Netherlands as well. Since our results suggest that this development is not optimal

as far as the scope for intergenerational risk sharing is concerned, policymakers would

do well to carefully consider the design of funding arrangements.

Related to this chapter is Beetsma and Bovenberg (2009). However, there the labour

supply is exogenous and DRB and DWB both achieve the first best. Hence, relaxing

the assumption that the labour supply is exogenous has substantial implications for

the optimal design of the funded pension pillar. There is a growing literature studying

intergenerational risk sharing via pension systems. For example, Wagener (2004) and

Gottardi and Kubler (2011) focus on risk-sharing within PAYG systems. Matsen and

Thøgersen (2004) explore the optimal division between PAYG and funding from a risk-

sharing perspective. However, they do not consider funded systems of the DB type.

Neither do Teulings and De Vries (2006), who study a funded system in which each
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generation builds up its own pension account. Moreover, in contrast to this chapter,

they adopt a partial-equilibrium setting and assume that capital markets are complete

such that individuals can already invest in equity before they are born. Cui et al.

(2011) do study funded systems of the DB type, but, as all the other papers mentioned

so far, they do not consider endogenous labour supply. Bonenkamp and Westerhout

(2010) is one of the few papers that combines both funded DB pension systems and

endogenous labour supply. They compare the welfare gains from intergenerational risk

sharing with the losses due to the labour market distortions caused by the income-

dependent contributions in such systems. Their model lacks the analytical tractability

of the model employed here. More importantly, these authors are not concerned with

the design of optimal pension arrangements like I am in this chapter.

A second paper that combines funded DB schemes and endogenous labour supply

is Mehlkopf (2011). The author finds that in a sixty generations OLG model, the

presence of labour supply distortions forces the pension fund to deviate from optimal

consumption smoothing and absorb a relatively large fraction of shocks when they

occur, in order to avoid an accumulation of shocks and thus very high distortionary

welfare costs in the future. The focus of Mehlkopf’s paper is different from this chapter.

He employs a partial equilibrium model of a funded pension fund, which is modelled in

detail and focuses on the question how, quantitatively, for different parameter settings

of the model the pension fund should distribute shocks to pension fund assets over

different participating generations. In contrast, this chapter features a general equi-

librium model, where a PAYG first pillar is included besides the funded second pillar

pension fund, and where shocks do not only affect pension fund savings, but also wages

and the capital stock in the economy. The two-period set-up of the chapter allows for

analytical results for the social planner’s objective of optimal risk sharing of the shocks

occurring in the economy.

The remainder of this chapter is structured as follows. Section 2.1 lays out the

model and presents the social planner’s (first-best) solution. Section 2.2 discusses the

market economy with the different pension systems. Section 2.3 shows that only DWB

achieves the first best. Finally, Section 2.4 discusses the main results.
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2.1 The command economy

In this section I derive the conditions that characterise the social planner’s solution in

an economy with overlapping generations that cannot share their risks through direct

trade in the financial markets. The planner’s solution is presented as the benchmark

that the market economy combined with a pension arrangement would ideally be able

to achieve.

2.1.1 Individuals and preferences

I assume a closed economy that runs for two periods (0 and 1). Periods are denoted

by subscripts. In period 0, a continuum of identical individuals of total mass 1 is born.

This generation lives through periods 0 and 1 and is termed the “old generation”. It

is denoted by the supercript ”o”. Utility of each agent from this generation is

u (co0)− z (no0) + βE0 [u (co1)] , (2.1)

where co0 denotes its consumption in period 0 and co1 its consumption period 1. Further,

no0 is the endogenous labour supply in period 0, −z (.) is the disutility of work effort,

β is the discount factor and E0 [.] denotes expectations conditional on information in

period 0. I assume that u′ > 0, u′′ < 0, z′ > 0 and z′′ > 0.

In period 1, a new generation (the “young generation”) is born that also consists

of a continuum of identical individuals of total mass 1. It lives just for this period and

during this period it overlaps with the other generation. Utility of each agent from this

generation is

u (cy1)− z (ny1) , (2.2)

which is defined over consumption cy1 and endogenous work effort ny1 in period 1.

2.1.2 Investment and production

In period 0 each member of the old generation receives an initial non-stochastic endow-

ment of capital k0. With a mass 1 of old generation members, this implies an initial
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aggregate capital stock equal to K0 = k0. The aggregate capital stock in period 1 is

K1 = (1− δ0)K0 + I0, (2.3)

where I0 is aggregate investment in period 0 and δ0 is the (non-stochastic) depreciation

rate in period 0.

Production is endogenous in both periods. Given the aggregate labour supply N o
0

and Ny
1 in periods 0 and 1, respectively, production in these periods is given by

Y0 = A0F (K0, N
o
0 ) , Y1 = A1F (K1, N

y
1 ) . (2.4)

Further, A0 is the (non-stochastic) total factor productivity in period 0, while A1 is

the total factor productivity in period 1, which I assume to be stochastic. Finally, I

assume that function F exhibits constant returns to scale.

Following Bohn (1999a) and Smetters (2006), depreciation risk is introduced to

reduce the correlation between labour and capital income. A growing number of recent

articles argue that depreciation shocks are an important source of economic fluctuations

– see, for example, Barro (2006, 2009) and Liu et al. (2010). Such shocks can occur

for a variety of reasons, such as natural disasters, armed conflicts and other violence

causing harm to the capital stock. Barro (2006) documents evidence of these types

of shocks and finds that they occur with a probability of roughly 2% per year and an

impact ranging from a decrease of 15% to 64% of real GDP per capita. Other sources

of depreciation risk are unexpected technological advances and the associated creative

destruction that renders capital obsolete. Further, changes in environmental regulation

and other regulatory standards (such as town planning) may affect the value of the

existing capital stock.
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2.1.3 The resource constraints

The period 0 and 1 resource constraints are, respectively,

Co
0 = A0F (K0, N

o
0 ) + (1− δ0)K0 −K1, (2.5)

Cy
1 + Co

1 = A1F (K1, N
y
1 ) + (1− δ1)K1, (2.6)

where the left-hand sides denote aggregate consumption. Further, 0 ≤ δ1 ≤ 1 is the

stochastic depreciation rate of the capital stock between periods 0 and 1. The right-

hand side of (2.5) represents total production minus investment. Because the world

ends after period 1, whatever capital is left after production in this period is used for

consumption. Hence, the right-hand side of (2.6) is total production plus capital left

after depreciation.

2.1.4 The social planner’s solution

The vector ξ0 ≡ {A0, δ0} is known at the start of period 0, while the vector of shocks for

period 1, ξ1 ≡ {A1, δ1}, is unknown in period 0 and only becomes known before period

1 variables are determined. As a benchmark, I consider a utilitarian social planner

who chooses an optimal state-contingent plan in period 0 to maximize the sum of the

expected utilities of all individuals. The consumption levels and the labour supply

in period 1 are functions of the shocks, which implies co1 = co1 (ξ1) , cy1 = cy1 (ξ1) and

ny1 = ny1 (ξ1). Since the masses of the old and the young generations are both unity,

the planner realizes that N o
0 = no0, Co

0 = co0, Ny
1 = ny1, Co

1 = co1 and Cy
1 = cy1. Using this

the Lagrangian of the planner’s problem can be written as:

£ =

∫  [u (co0)− z (no0) + βu (co1 (ξ1))] + β [u (cy1 (ξ1))− z (ny1 (ξ1))]

+βλ1 (ξ1) [A1F (K1, n
y
1 (ξ1)) + (1− δ1)K1 − cy1 (ξ1)− co1 (ξ1)]

 f (ξ1) dξ1

+ λ0 [A0F (K0, n
o
0) + (1− δ0)K0 −K1 − co0] .

Here, f (ξ1) stands for the probability density function of the vector of stochastic shocks

ξ1. The Lagrange multipliers on the resource constraints in periods 0 and 1 are denoted
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by λ0 and λ1 (ξ1), respectively.

The optimality conditions are

cy1 = co1,∀ ξ1, (2.7)

z′ (no0) /u′ (co0) = A0FN0 , (2.8)

z′ (ny1) /u′ (cy1) = A1FN1 ,∀ξ1, (2.9)

u′ (co0) = βE0

[(
1 + rkn1

)
u′ (co1)

]
. (2.10)

where rkn1 ≡ A1FK1 − δ1 is the “net-of-depreciation return on capital” in period 1

and FKt (FNt) is the marginal product of capital (labour) in period t. (I drop func-

tion arguments whenever this does not create ambiguities.) Condition (2.7) equalizes

the marginal utilities of the two generations, (2.8) and (2.9) provide the optimal con-

sumption - leisure trade-offs for the old, respectively young generation, while (2.10)

determines the optimal intertemporal trade-off.

2.2 The decentralized economy

This section describes the decentralized market economy in which individuals and firms

maximize their objective functions under the relevant constraints. A key question will

be which pension system can replicate the planner’s solution. (2.7) can be interpreted

as the condition for ex-ante trade in risks between the young and old generations in

complete financial markets. However, in a decentralized economy, the two generations

cannot trade risk in financial markets, because the young generation is born only after

the shock vector ξ1 has materialized. Other institutions thus have to replace this

missing market and this chapter shall explore to what extent the pension system can

perform that role.

In the decentralized market economy events unfold as follows. In period 0, given

their initial capital holdings k0 and the known vector ξ0, the members of the old

generation take their investment, consumption and labour supply decisions, while firms

take hiring and production decisions. At the beginning of period 1 the shock vector ξ1

materializes. After this, firms take hiring and production decisions for period 1, while
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the members of the young generation choose their consumption - labour trade-off.

2.2.1 The pension systems

The market economy features a two-tier pension system, with a pay-as-you-go (PAYG)

first tier and a fully-funded second tier. The former consists of each young in period

1 paying to the old generation a lump-sum transfer θl and a fraction θw of their wage

income. Hence, given that the two generations are both of size 1, the PAYG transfer

per old person is θl + θww1N
y
1 .

The second tier consists of a pension fund that in period 0 per old-generation

member collects a fraction θs of their labour income as a mandatory contribution, so

total payments to the fund equal θsw0N
o
0 . The fund invests aggregate amounts Bs

1 and

Ks
1 in real bonds and capital, respectively, such that

θsw0N
o
0 = Bs

1 +Ks
1 . (2.11)

The corresponding investments per individual contributor will be denoted by bs1 and

ks1. The total value of the fund in period 1 is

(1 + ra1)θsw0N
o
0 =

(
1 + rf1

)
Bs

1 +
(
1 + rkn1

)
Ks

1 , (2.12)

where ra1 is the average fund return and rf1 is the non-stochastic real-debt return. rs1

denotes the net return in period 1 to the old generation members on their pension fund

investment. Depending on the type of benefit scheme, the value of the fund may differ

from the value of the total pay-out (1+rs1)θsw0N
o
0 to the old. The young are the fund’s

residual claimants and receive the difference (ra1 − rs1)θsw0N
o
0 . The difference (positive

or negative) is spread out over the young generation in a lump-sum fashion.

The possibility that rs1 differs from ra1 allows for potential intergenerational risk

sharing. It is assumed that the second pillar is fully funded in utility terms in an

ex ante sense, which means that an old individual is indifferent between paying an
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additional unit into the fund and consuming it now (or investing it privately). Hence,

u′(co0) = βE0[(1 + rs1)u′(co1)]. (2.13)

The members of the old generation pay their mandatory contribution θsw0n
o
0 into the

fund and this contribution generates a pay off (1 + rs1)θsw0n
o
0. Hence, the total payout

to each member of this generation depends on the individual contribution. The full

funding condition is necessary to ensure that the old generation makes an optimal

consumption-savings decision in the first period of their life and to prevent a distortion

on the labour market via the wage dependent pension contribution. Hence, it is a

necessary condition for a market equilibrium with a pension arrangement to replicate

the first best.

The net flows between the generations can be summarized by the generational

accounts:

go = θl + θww1N
y
1 + (rs1 − ra1)θsw0n

o
0, (2.14)

−gy = θl + θww1n
y
1 + (rs1 − ra1)θsw0N

o
0 ,

where go and gy are the accounts for each old, respectively young, generation member

and where the assumption that each generation’s size is 1 has been used. Terms

involving aggregate labour supply variables are the result of lump-sum transfers and

will be taken as given at the individual level, because each individual is too small to

affect aggregate variables by changing its own labour supply. Of course, in equilibrium

ny1 = Ny
1 and no0 = N o

0 and, hence, Go + Gy = 0, where Gy and Go are defined as the

aggregate accounts of the young and old generations, respectively.

Defined contribution (DC)

If the second-pillar pension is of the DC type, the total payout is simply equal to the

value of the fund, i.e. assets and liabilities are always equal. Hence, rs1 = ra1 and the

second pillar provides no additional intergenerational risk-sharing opportunities. Since
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rs1 = ra1 , the generational account of a young generation member reduces to

− gy = θl + θww1n
y
1. (2.15)

Defined real benefit (DRB)

With a DRB system, each old receives a safe real return on its contribution. Full

funding excludes ex ante intergenerational redistribution and, hence, requires

rs1 = rf1 . (2.16)

The young receive what is left over of the pension fund after the old have been paid

their safe real benefit. Hence, the young absorb the mismatch risk of the pension fund

and they receive (ra1 − rf1 )θsw0N
o
0 =

(
rkn1 − r

f
1

)
Ks

1 , where (2.11), (2.12) and (2.16)

have been used. In this case, the generational account of a young generation member

becomes:

− gy = θl + θww1n
y
1 +

(
rf1 − rkn1

)
Ks

1 . (2.17)

Defined wage-indexed benefit (DWB)

Finally, with a DWB system, each old receives

(1 + rs1) θsw0n
o
0 = θdwbNy

1w1, (2.18)

where θdwb is the (non-stochastic) fraction of the aggregate wage sum in period 1. The

pension benefit received by the old generation depends on the wage rate w1 per unit of

labour and is stochastic since w1 is determined by market forces only after the shocks

have materialised. The pension contribution is like an investment in a wage-linked

bond, with a payout that depends on aggregate wage developments.

Combining the full-funding condition (2.13) with (2.18) yields1

θs = θdwb
βE0 [Ny

1w1u
′ (co1)]

no0w0u′ (co0)
. (2.19)

1Multiply both sides of (2.18) by u′ (co1) and take expectations E0 [.] on each side of the resulting
equation. Combine the result with (2.13).
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In the absence of a risk-free bond, θsw0n
o
0 would simply be fully invested in capital.

When risk-free bonds exist, as in our economy, the pension fund issues or accepts risk-

free bonds to create a wedge between the collected contributions and its investment in

physical capital. The generational account of a young generation member becomes

− gy = θl + w1

(
ny1θ

w +Ny
1 θ

dwb
)
−
(

1 + rf1

)
Bs

1 −
(
1 + rkn1

)
Ks

1 . (2.20)

Because the payment θdwbNy
1w1 is distributed in a lump-sum fashion over young gen-

eration individuals and a change in the labour supply of such an individual has a

negligible effect on the aggregate wage sum, the presence of θdwb does not distort this

individual’s labour supply decision. Hence, the factor in front of θdwb in (2.20) should

be the aggregate labour supply Ny
1 of the young generation.

2.2.2 Individual budget constraints

With voluntary private investments bp1 and kp1 in real bonds and capital, period 0

consumption of each member of the old generation is

co0 = (1− θs)no0w0 +
(
1 + rkn0

)
k0 − (bp1 + kp1) , (2.21)

while period 1 consumption of, respectively, each young and old generation member is:

cy1 = w1n
y
1 + gy, (2.22)

co1 =
(
1 + rkn1

)
kp1 +

(
1 + rf1

)
bp1 + (1 + ra1) θsno0w0 + go. (2.23)

2.2.3 Individual and firm optimization

The model is solved through backwards induction. Under all three pension schemes,

the optimal consumption - leisure trade-off to the period 1 young is

z′ (ny1) /u′ (cy1) = (1− θw)w1. (2.24)
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In period 0, the old generation decides about its labour supply and the allocation of

its savings over risk-free bonds bp1 and risky capital kp1 according to:

z′ (no0) /u′ (co0) = w0 (2.25)

β
(

1 + rf1

)
E0 [u′ (co1)] = u′ (co0) , (2.26)

βE0

[(
1 + rkn1

)
u′ (co1)

]
= u′ (co0) . (2.27)

Appendix 2.B contains the details on the derivation of the first-order conditions.

Assuming perfectly competitive representative firms, the profit-maximization con-

ditions in periods 0 and 1 for firms are:

AtFNt = wt, AtFKt − δt = rknt , t = {0, 1}. (2.28)

2.2.4 Market equilibrium conditions

The model is completed with the labour, capital and bond market equilibrium con-

ditions. The labour market equilibrium conditions are Ny
1 = ny1 and N o

0 = no0. The

capital market equilibrium condition for period 0 is K0 = k0. In period 1, the total

capital stock must be equal to total privately held capital plus total capital held by

the pension fund, K1 = Kp
1 + Ks

1 . Further, since the mass of the old generation is 1,

K1 = k1, Kp
1 = kp1 and Ks

1 = ks1. The aggregate net supply of bonds must be zero,

so that total private bond holdings and total pension fund bond holdings cancel out:

Bp
1 +Bs

1 = 0. Finally, Bp
1 = bp1 and Bs

1 = bs1.

2.3 Optimality of pension systems

2.3.1 Pension fund optimality conditions

It is now explored whether and how the market economy can replicate the social opti-

mum with an appropriate choice of the first and second pension pillars. It is easy to

see that when a pension arrangement produces (2.7) - (2.9) for all possible realizations

of the shock vector ξ1, then the market equilibrium reproduces the socially-optimal
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allocation under this arrangement. From equations (2.25) and (2.28) note that the

pension system always satisfies (2.8). It is assumed that the pension system parame-

ters θl, θw, θs, θdwb, Ks
1 and Bs

1 are not shock-contingent, as would be required for a

realistic arrangement.

The optimality condition (2.7) requires the right-hand sides of (2.22) and (2.23) to

be equal for all possible shock vectors ξ1. Because both generations are of unity mass

and populated by representative agents, the aggregate versions of these expressions can

be used. Hence, condition (2.7) requires the generational accounts to vary such that:

1
2
A1FN1N

y
1 − 1

2

(
1 + rkn1

)
K1 = −Gy, (2.29)

where (2.12), (2.28), Bp
1 + Bs

1 = 0, K1 = Kp
1 + Ks

1 and Gy + Go = 0 have been used.

Hence, if profit income plus the scrap value of capital of the old generation in period

1,
(
1 + rkn1

)
K1, exceeds the wage income of the young generation, A1FN1N

y
1 , the old

would have more per-capita resources for consumption in period 1 than the young.

Intergenerational equality of period 1 consumption requires the generational accounts

to offset these income differences.

Reproduction for all shocks of (2.9) by (2.24) is possible if and only if

θw = 0. (2.30)

In other words, replication of the social optimum requires (at least) the elimination of

the wage-linked part of the first pillar.

2.3.2 Optimality of different pension systems

The main result of this chapter can now be stated:

Proposition 2.1. (a) With a DC second pillar it is generally not possible to replicate

the social optimum. (b) With a DRB second pillar it is generally not possible to replicate

the social optimum. (c) With a DWB pillar it is possible to replicate the socially-

optimal allocation for all possible shock combinations. The appropriate parameters of

the pension arrangement are Bs
1 = θsN o

0w0 −Ks
1, θ

l =
(

1 + rf1

)
Bs

1, θ
w = 0, θdwb = 1

2



22 Chapter 2

and Ks
1 = Kp

1 , where θ
s follows from (2.19) with N o

0 substituting for no0.

Proof. Part (a): Under a DC fund, −Gy = θl + θwA1FN1N
y
1 . Substitution into

(2.29) yields as a necessary condition for reproducing the social optimum that θl +

θwA1FN1N
y
1 = 1

2
A1FN1N

y
1 − 1

2
[A1FK1 + (1− δ1)]K1. It is immediately obvious that

this expression cannot hold for all possible shock realizations for a constant parameter

combination (θl, θw).

Part (b): Under a DRB scheme, −Gy = θl+θwA1FN1N
y
1 +
(
rf1 − rkn1

)
Ks

1 . Substitution

into (2.29) yields as a necessary condition for reproduction of the social optimum:

θl + θwA1FN1N
y
1 +

(
rf1 − rkn1

)
Ks

1 =
1

2
A1FN1N

y
1 −

1

2
[A1FK1 + (1− δ1)]K1.

There are three instruments
(
θl, θw, Ks

1

)
to produce equality of the constant terms

and the shock coefficients on both sides of this expression. The solution is Ks
1 = Kp

1 ,

θl = −
(

1 + rf1

)
Ks

1 and θw = 1
2
. The solution for θw contradicts (2.30).

Part (c): Under a DWB fund, −Gy = θl + A1FN1N
y
1

(
θw + θdwb

)
−
(

1 + rf1

)
Bs

1 −(
1 + rkn1

)
Ks

1 . Substitute this into (2.29). It is easy to check that the proposed solution

ensures that the resulting expression holds for all possible shock combinations. Because

θw = 0 is part of the proposed solution, also (2.9) is fulfilled for all possible shock

combinations.

Intuitively, the first pillar can only be used to offset possible systematic transfers

between generations via its lump-sum part. This pillar should not contain a wage-

linked part since this would distort the young generation’s labour supply decision.

Hence, this pillar cannot be employed to share wage risks. Notice that the lump-sum

component of the first pillar is a necessary part of the optimal arrangement, because

making a lump-sum transfer out of the second-pillar fund would break the full-funding

condition. Hence, inter-temporal optimisation would be distorted and the first-best

would not be reached. Since a DC scheme does not allow for any risk sharing, it

is obvious that a pension system consisting of a DC scheme and a lump-sum PAYG

transfer cannot mimic the social planner’s allocation. A lump-sum PAYG plus a DRB

second pillar cannot achieve the first best either, contrary to the results in Beetsma and
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Bovenberg (2009). In their paper, labour supply is exogenous, so a wage-linked PAYG

part does not distort the labour supply decision. They use the first pillar to share wage

risks optimally and the second pillar to share financial risks. Here the PAYG pillar

does distort the labour supply, so the second pillar should share both risks. This is

only possible under a DWB scheme.

2.4 Discussion

This chapter has shown that a two-tier pension arrangement with a DWB second tier is

able to combine optimal intergenerational redistribution with optimal intergenerational

risk sharing, without distorting the labour market. The appropriate DWB arrangement

completely separates the roles of both pension system pillars, where that of the first

pillar is to provide the right amount of systematic redistribution and that of the second

pillar is to provide for optimal risk sharing. This contrasts with the DRB system

where a distortionary pension premium is needed to share wage risks between the two

generations via the first pension pillar.

Our results have clear implications for the design of pension arrangements. From the

perspective of the sustainability of adequate future pension provision the trend towards

more funding is to be welcomed. However, the design of new funding arrangements

tends to be of the defined-contribution type, which implies that risk sharing through

the second pillar of the pension system will be very limited or non-existent. Shifting

the task of providing risk sharing to the PAYG first pillar creates distortions in the

labour market. Hence, policymakers would do well to carefully consider the design of

funded arrangements, since our results indicate that a properly designed funded DB

arrangement improves welfare of participants.

An obvious extension of the present analysis would be to cast the analysis into

an infinite horizon framework with endogenous labour supply and production in every

period. In this infinite horizon model, the young and the pension fund must save for

the new capital stock, whereas in the model in this chapter the world ends after period

1 and there is no need for this capital stock. Due to this additional complication it

is no longer possible to exactly replicate the social planner’s allocation in the infinite
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horizon model, even with a DWB system. The pension system must ensure that the

two generations living at the same time have the same exposure to productivity and

depreciation shocks and have the same level of consumption in a base scenario. The pa-

rameter constellation proposed in this chapter equalises exposure to economic shocks,

but the old generation does not contribute to the new capital stock. Moreover, the op-

timal new capital stock will depend on previous technological and depreciation shocks.

In the infinite horizon model, pension planners must make a trade-off between perfect

risk sharing and equalisation of consumption. The optimal constrained allocation has

features of both. However, I again find that to avoid labour market distortions, it is

necessary that the first pillar is only used for redistribution and not for risk sharing.

Although it is impossible to replicate the social planner’s solution exactly, our main

result still holds. A DWB system outperforms a DRB system with respect to risk

sharing since any risk sharing allocation that is possible with a DRB system, is also

possible with a DWB system, but without the distorting effect via the wage-linked part

of the second pillar.
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APPENDICES

2.A Derivation of the planner’s solution

Maximization of the planner’s program with respect to co0, no0, K1, c
y
1 (ξ1) , co1 (ξ1) and

ny1 (ξ1) for all ξ1 yields the following first-order conditions:

u′ (co0) = λ0,

z′ (no0) = λ0A0FN0 ,

λ0 =

∫
βλ1 (ξ1)

(
1 + rkn1

)
f (ξ1) dξ1,

u′ (cy1 (ξ1)) = λ1 (ξ1) ,∀ξ1,

u′ (co1 (ξ1)) = λ1 (ξ1) ,∀ξ1,

z′ (ny1 (ξ1)) = λ1 (ξ1)A1FN1 ,∀ξ1.

By eliminating the Lagrange multipliers from these first-order conditons, we obtain

u′ (cy1) = u′ (co1) ,∀ξ1,

and (2.8)-(2.10). This reduces to (2.7)-(2.10).

2.B Individual first-order conditions

2.B.1 Period 1 individual first-order conditions

The young generation solves:

max
cy1 ,n

y
1

{u (cy1)− z (ny1)} ,
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subject to the following budget constraint, which differs according to the pension

scheme that is in place:

DC: cy1 = (1− θw)w1n
y
1 − θl,

DRB: cy1 = (1− θw)w1n
y
1 − θl −

(
rf1 − rkn1

)
Ks

1 ,

DWB: cy1 = (1− θw)w1n
y
1 − θdwbw1N

y
1 − θl +

(
1 + rf1

)
Bs

1 +
(
1 + rkn1

)
Ks

1 .

In all three cases, the first-order conditions for cy1 and ny1 are given by, respectively,

u′ (cy1) = µ,

z′ (ny1) = µ (1− θw)w1,

where µ is the Lagrange multiplier on the budget constraint. The first-order conditions

combine to (2.24).

2.B.2 Period 0 individual first-order conditions

We can write consumption per old individual in period 1 as:

co1 =
(
1 + rkn1

)
kp1 +

(
1 + rf1

)
bp1 + (1 + rs1) θsw0n

o
0 + θl + θww1N

y
1 . (2.31)

In period 0 a member of the old generation solves:

max
coo,c

o
1,n

o
0,k

p
1 ,b

p
1

{u (co0)− z (no0) + βE0 [u (co1)]} ,

subject to (2.21) and (2.31). The first-order conditions are (2.26), (2.27) and:

u′ (co0) (1− θs)w0 − z′ (no0) + βθsw0E0 [(1 + rs1)u (co1)] = 0⇔

u′ (co0)w0 − z′ (no0)− θsw0u
′ (co0) + θsw0βE0 [(1 + rs1)u (co1)] = 0⇔

u′ (co0)w0 − z′ (no0) = 0,

where we have used (2.13).
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2.C Infinite horizon model

2.C.1 Notation

In the paper we use o and y superscripts to identify generations (so co0 is consumption in

period 0 of the generation born in period 0 and co1 consumption of the same generation

in period 1). This is not possible with an infinite number of generations, so in this

appendix we use a subscript to identify the timing of the variable and a superscript to

indicate whether this generation was born in the previous period or in this period (cy0

is consumption in period 0 by the generation born in period 0, co1 is this generation’s

consumption in period 1). People only work when young, so individual labour supply

does not need an age indicator (nt is labour supply by someone born in period t).

2.C.2 Social Planner

Full Diamond-Samuelson OLG model for the central planner

max
co,cy ,n

∞∑
t=0

βtE
[
u(cyt )− z(nt) + βu(cot+1)

]
+ u(cot ) (2.32)

s.t. cot + cyt +Kt+1 = AtF (Kt, nt) + (1− δt)Kt for each t ≥ 0 (2.33)

A0 and δ0 are known (non-stochastic), future At and δt for t ≥ 1 are stochastic.

The FOC’s are

cot = cyt ∀ t ≥ 0 (2.34)

z′(nt)

u′ (cyt )
= AtFN(Kt, nt) ∀ t ≥ 0 (2.35)

u′ (cyt ) = βEt

[(
At+1FK(Kt+1, nt+1) + (1− δt+1)

)
u′
(
cot+1

) ]
∀ t ≥ 0 (2.36)

These conditions are comparable to the conditions in the two-period model in the

paper. The first equalises consumption of everybody living at the same time, the

second describes the optimal trade-off between leisure and consumption, the third is

the Euler equation, describing the optimal intertemporal trade-off.
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2.C.3 Decentralised economy

The pension system is as in the paper. The relevant incentives are

• The member of the young generation pays a fraction θw per received euro wage

income plus a fixed contribution θl. Paying to the first pillar has an incentive

effect!

• The member of the old generation receives θl + θwwt+1Nt+1, regardless of the

individual work history. The first pillar’s pension payouts have no incentive

effect.

• Each member of the young generation pays θs to the pension fund. This contri-

bution has an incentive effect. Per paid euro this participant receives a stochastic

pension when old, so this pension also has an incentive effect. The full funding

condition ensures that these two effects cancel out.

• The residual value of the pension fund (positive or negative) is equally spread

over the young generation. This has no incentive effect.

The pension fund’s budget constraint is

Bs
t+1 +Ks

t+1 = (1 + rft )Bs
t + (1 + rkt )K

s
t + θstwtNt − (1 + rst )θ

s
t−1wt−1Nt−1 (2.37)

The fully funded condition still holds, so the expected return on paid contributions

must be equal to the expected return on other assets.

The individual budget constraint for each young generation is

cyt = wtnt − bpt+1 − k
p
t+1 − (θl + θwwtnt)− θstwtnt (2.38)

And when old

cot+1 = (1 + rft+1)bpt+1 + (1 + rkt+1)kpt+1 + (θl + θwwt+1Nt+1) + (1 + rst+1)θstwtNt (2.39)
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Optimisation of individual utility, taking the factor payments as exogenous and using

the pension fund’s full funding condition gives (besides the two budget constraints)

z′(nt)

u′ (cyt )
= (1− θw)wt (2.40)

u′ (cyt ) = βEt

[(
1 + rkt+1

)
u′
(
cot+1

) ]
(2.41)

u′ (cyt ) = βEt

[(
1 + rft+1

)
u′
(
cot+1

) ]
(2.42)

The possible distortionary effect of the second pillar is neutralised by the fully

funded condition. These individual first order conditions are comparable to the ones in

the paper. For equilibrium factor prices (so wt = AtFN(Kt, nt) and rt = AtFK(Kt, nt)−

δt), markets ensure that the intertemporal trade-off is optimal. The first-pillar’s wage

component distorts the intratemporal trade-off and a necessary requirement to mimic

the social planner’s allocation is that this wage component is zero (θw = 0).

As in the paper, the task of the pension system is to equalise consumption for the

young and the old living at the same time. Substitution of the pension fund’s budget

identity into that of the young and using the equilibrium conditions on the market for

real bonds (Bp
t+1 + Bs

t+1 = 0) and the capital market (Kp
t+1 + Ks

t+1 = Kt+1) gives for

the consumption of the young

cyt = wtnt −Kt+1 − (θl + θwwtnt) + (1 + rft )Bs
t

+ (1 + rkt )K
s
t − (1 + rst )θ

s
t−1wt−1Nt−1 (2.43)

This equation differs from the paper in one crucial aspect: it includes Kt+1. In the

paper, the economy ends after period 1 and there is no reason to save so Kt+1 = 0. In

this infinite horizon model, the young have to save for the new capital stock. Using

the pension parameters proposed in the paper gives for the consumption of the old and

young living at time t

cyt = 1
2
wtnt + 1

2
(1 + rkt )Kt −Kt+1 (2.44)

cot = 1
2
wtnt + 1

2
(1 + rkt )Kt (2.45)
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The proposed parameters do give the old and the young the same exposure to economic

shocks, but it will not equalise the level of consumption because the young also have

to (and want to) save for the next period. They save kpt+1 themselves and their pension

fund saves Ks
t+1, but for the proposed parameters, it all comes from their consumption.

Since the optimal new capital stock is non-linear in wages and interest rate shocks, and

all pension parameters must be shock-independent, it is impossible to exactly mimic

the social planner’s allocation.

The pension system must ensure that the two generations living at the same time

have the same exposure to productivity and depreciation shocks and have the same

level of consumption in a base scenario. In the infinite horizon model, pension planners

must make a trade-off between perfect risk sharing and equalisation of consumption.

The optimal constrained allocation has features of both. However, we again find that

to avoid labour market distortions, it is necessary that the first pillar is only used for

redistribution and not for risk sharing. Although it is impossible to replicate the social

planner’s solution exactly, our main result still holds. A DWB system outperforms

a DRB system with respect to risk sharing since any risk sharing allocation that is

possible with a DRB system, is also possible with a DWB system, but without the

distorting effect via the wage linked part of the second pillar.
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Chapter 3

Sharing of Demographic Risks in a

General Equilibrium Model with

funded Pensions

In general, pension arrangements will affect the risks faced by both workers and retirees.

One type of risk that one typically thinks of in this context is financial market risk.

This risk is relatively large for funded pension systems in which workers accumulate

assets for future retirement via their pension fund. Another important source of risk

that is present in pension systems is demographic risk. Expected and unexpected

developments in both survival probabilities and fertility rates have a direct impact

on the distribution of burdens and benefits through pension systems. Taking them

explicitly into account in the design of the pension arrangement may therefore lead to an

improved allocation of these types of risks over the different generations of participants

in the pension system.

In the literature, the impact of longevity or mortality risk has received a lot of

attention. The paper by Andersen (2005) studies the impact of of longevity risk on

PAYG systems, while Cocco and Gomes (2009) studies the effects on retirement savings.

Also, the structural effect of increasing longevity and decreasing fertility (population

aging) has been studied extensively, see for example Brsch-Supan et al. (2006) and

Bovenberg and Knaap (2005).

In this chapter, the effects of the presence of demographic and financial shocks on

optimal pension system design are investigated. Closest to our set-up are the papers by
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and Bovenberg and H.Uhlig (2006). Bohn (1999b) discusses the impact of demographic

uncertainty on PAYG arrangements, while Bovenberg and H.Uhlig (2006) investigate

the impact of demographic shocks in a model with capital and endogenous growth.

Their set-up is an infinite horizon model with 2 overlappig generations, yielding gen-

erational conditions for optimal intergeneration risk sharing.

In this chapter, to keep the set-up as simple as possible, the model used is a two-

period model with two generations whose lifes overlap only in the second period. This

set-up allows for a very detailed numerical analysis of the effects of demographic shocks

on the optimal set-up of the pension system. The young generation is born in the

second period after all shocks have materialized. Hence, under laissez-faire – i.e., in

the absence of a pension system – the young generation is unable to participate in

financial markets and thus unable to share risks with the old generation. The pension

systems under consideration consist of a pay-as-you-go (PAYG) first tier and a fully-

funded second tier. Benefits in the second tier can be organized in different ways, as a

defined-contribution (DC) or a defined-benefit (DB) scheme. Defined benefits can be

defined either in real terms or relative to wages.

The two types of demographic shocks affect optimal defined-benefit pension ar-

rangement in a highly nonlinear nature and are integral to both the total size of the

economy and the distribution of resources over different generations. Specifically, fer-

tility risk is important for both the wage level and the returns to capital (and thus

aggregate production), and also for the relative size of transfers within the pension

system. Mortality risk is important both for the returns on the funded part of the

pension system and for the relative sizes of transfers within the pension system.

Optimal pension arrangements are explored under the assumption that the param-

eters of the arrangement are constant. In particular, they are not contingent on the

stochastic shocks. Allowing the pension system parameters to be shock dependent

would allow for more flexibility in distributing the various shocks over the pension

system participants. However, frequent changes in the pension parameters may un-

dermine the confidence in the pension system, while, moreover, each time that the

system’s parameter combinations are to be reset, an intergenerational conflict may be

re-opened on how the parameters should exactly be set. Finally, it may be hard to
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fine-tune the parameters in response to shocks.

It is well known (see Beetsma and Bovenberg (2009)) that in the absence of demo-

graphic risks the decentralized pension system is able to replicate the social planner’s

solution by determining optimal redistribution via the first pillar and optimal risk

sharing through the second pillar. When demographic risk is added to the model, this

result disappears. Even if there is only one source of demographic risk (either fertility

risk of mortality risk), it is no longer possible to replicate the social planner’s solution

anymore due to the complicated and non-linear effects each demographic shock has on

the economy. Specifically, fertility risk affects both the wage level and the returns to

capital (and thus aggregate production), as well as the relative size of transfers within

the pension system. Mortality risk is important both for the returns on the funded

part of the pension system and for the relative sizes of transfers within the pension

system. Finding a solution that is as close as possible to the social planner’s solution

requires abandoning the separation of redistribution and risk sharing between the first

and second pillar. Instead, in the presence of demographic risk, both pillars are in-

volved in achieving an amount of risk sharing that is as close as possible to that under

the social planner’s solution.

With all four sources of risk present, it is socially optimal for the pension system to

feature a funded second pillar of the defined-benefit type where the benefit is linked to

the aggregate wage level. This setup, combined with a PAYG first pillar consisting of

a lump-sum transfer and a transfer linked to individual wages, allows for an allocation

of all sources of risks such that the resulting welfare gains (measured in terms of the

percent increase in consumption in all periods and all states of the world) are very

close to those obtained under the social planner’s solution. Even with highly volatile

demographic shocks, the short-fall under the wage-linked DB scheme from the social

planner’s solution is only about 0.01%, compared to welfare gains of over 5% relative

to the laissez-faire economy. Further, the numerical analysis suggests that welfare

gains from a defined real-benefit scheme are close to those under a scheme with defined

wage-linked benefits. Hence, the precise format in which benefits are defined in a

DB scheme may be less important than the scheme being defined benefit rather than

defined contribution – the latter corresponds to the laissez-faire economy and implies
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that substantial gains from risk sharing may be foregone.

The setup of the remainder of this chapter is as follows. Section 2 presents the

command economy and the social planner’s solution. The decentralized economy in

combination with the different pension schedules is introduced in Section 3. Section 4

presents the optimal pension scheme in the case of perfect foresight. Section 5 discusses

the numerical procedure and the calibration, while Section 6 presents the numerical

results. Section 7 investigates the robustness of the results for variations in the degree

of risk aversion. Finally, Section 8 concludes the main text of the chapter.

3.1 The command economy

The model is deliberately kept as simple as possible, in order to describe the intuitions

as clearly as possible.

3.1.1 Individuals and preferences

The model represents a closed economy. It incorporates two periods (0 and 1) and two

generations. In period 0, a generation of mass N o
0 is born. This generation is referred

to as the ”old generation”. The old generation consumes only in period 1 when it has

become old. Therefore, this generation’s utility function is given by:

E0 [ψu (co)] , (3.1)

where co represents consumption when the agent is old and ψ is the probability that

an individual old person survives period 0 and enters period 1. Further, E0 [.] is the

expectations operator conditional on information before any of the shocks have occurred

(see below). It is assumed that function u (.) is twice continuously differentiable, with

u′ > 0 and u′′ < 0.

In period 1 a new generation of size Ny
1 is born. This generation is referred to as

the ”young generation”. The representative individual of the young generation features

utility

u (cy) , (3.2)
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which is defined over per-young person consumption cy in period 1.

3.1.2 Demographics

There are two sources of demographic risk in the model. The first source of risk is

uncertainty about the survival probability ψ of the old generation. In the remainder

of the chapter this type of risk is referred to as ”mortality risk”. The size of the

old generation in period 0 is denoted by N o
0 and is nonstochastic. The size of the

old generation in period 1 is denoted N o
1 and depends on the realization of ψ, i.e.

N o
1 = ψN o

0 . The second source of risk is fertility risk. The size of the young generation

in period 1, Ny
1 , is also uncertain.

3.1.3 Production

In period 0 each old generation member receives an exogenous non-storable initial

endowment η. Production is endogenous only in period 1, when the two generations

co-exist. Labour supply is exogenous in the model and amounts to 1 unit of labour per

young person. Hence, production in period 1 is given by

Y = AF (K,Ny
1 ) , (3.3)

where A denotes (stochastic) total factor productivity, K represents the aggregate

capital stock and Ny
1 is the aggregate labor input. The production function exhibits

constant returns to scale. In the closed economy setting in this chapter, the capital

stock K in period 1 is the result of investment in the previous period, period 0.

3.1.4 Resource constraints

The resource constraints in periods 0 and 1 are given by, respectively,

N o
0η = K, (3.4)

AF (K,Ny
1 ) + (1− δ)K = Ny

1 cy +N o
1 co, (3.5)
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where 0 ≤ δ ≤ 1 is the stochastic depreciation rate of the capital stock. The left-hand

sides of (3.4) and (3.5) are the available resources in the two periods. Specifically, the

left-hand side of (3.5) equals total production plus what is left over of the capital stock

after taking depreciation into account. The right-hand sides of (3.4) and (3.5) describe

the use of these resources. The entire endowment in period 0 is spent on investment in

physical capital (equation (3.4)), while the right-hand side of (3.5) is total consumption

in the economy.

3.1.5 The social planner’s solution

The vector of the stochastic shocks hitting the command economy is ξ ≡ {A, δ,Ny
1 , ψ}.

It is unknown in period 0, but becomes known before period 1 variables are determined.

A (utilitarian) social planner who aims at maximising the sum of the discounted ex-

pected utilities of all individuals serves as a benchmark. In period 0, the planner

commits to an optimal state-contingent plan. Hence, the consumption levels are func-

tions of the shocks, so that co = co (ξ) and cy = cy (ξ). The planner’s problem can be

written as:

£ =

∫  N o
1 [u (co (ξ))] +Ny

1 [u (cy (ξ))] +

λ (ξ) [AF (K,Ny
1 ) + (1− δ)K −Ny

1 cy (ξ)−N o
1 co (ξ)]

 f (ξ) dξ.(3.6)

(3.7)

Here, f (ξ) stands for the probability density function of the vector of stochastic shocks

ξ. The Lagrange multiplier on the resource constraint in period 1 is denoted by λ.

Maximization of the planner’s program with respect to cy (ξ) and co (ξ) for all ξ yields

the following first-order conditions:

∂£

∂cy
= 0⇒ u′ (cy (ξ)) = λ (ξ) ,∀ξ, (3.8)

∂£

∂co
= 0⇒ u′ (co (ξ)) = λ (ξ) ,∀ξ. (3.9)
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By eliminating the Lagrange multiplier from these first-order conditons, the following

is obtained:

u′ (cy) = u′ (co) ,∀ξ, (3.10)

which, owing to the identical utility functions reduces to:

cy = co,∀ ξ, (3.11)

Condition (3.10) equalises the marginal utilities of the two generations which implies

that with identical utility functions for the two generations all shocks are perfectly

spread over all individuals. If a decentralised equilibrium is to replicate the planner’s

solution, conditions (3.8) and (3.9) need to be met in addition to the resource con-

straints (3.4) and (3.5). This is also the set of necessary conditions. This case differs

from Beetsma and Bovenberg (2009) in that the latter include a trade off between

period 0 and period 1 consumption for the old generation. Hence, in their paper there

is an extra optimality condition that needs to be fulfilled to replicate the social planner

solution. However, the intertemporal consumption trade off of the old generation is

dropped in this chapter as it does not substantially add to the insights that can be

gained from the analysis below.

3.2 The decentralized economy

3.2.1 The pension arrangements

The pension system in the decentralized economy consists of a PAYG first pillar and a

funded second pillar. The first pillar in the pension system is composed of a lump-sum

part and a wage-indexed part. Each old person receives a (possibly negative) amount

θp and a fraction θw of wage income of an individual young. Therefore, the systematic

transfer per surviving old member via the first pillar is θp + θww.

The second pillar of the pension system consists of a pension fund that collects

contributions θf per old-generation member in period 0, invests these contributions
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and pays out benefits to the fraction ψ of surviving old-generation members in period

1. Denoting by rf the rate of return that a surviving member of the old generation

receives on his contributions, the payout to this individual is (1 + rf )θf . Depending on

whether the pension fund is of the DC, DRB or DWB type, the format of the pension

benefit will be different (see below).

The pension fund can invest the old generation’s contribution in price-indexed bonds

or in physical capital:

N o
0θ

f = Bf +Kf , (3.12)

where Bf and Kf are the fund’s aggregate investments in price-indexed bonds and

physical capital, respectively. The bonds provide a non-stochastic return of r and

physical capital provides the stochastic net-of-depreciation rate of return rkn ≡ AFK−

δ, where FK is the marginal product of capital. The average return on the assets held

by the fund is denoted by ra. Therefore, the total value of the fund before the payout

is

(1 + ra)N o
0θ

f = (1 + r)Bf +
(
1 + rkn

)
Kf .

Depending on the pension scheme and the fund’s investment scheme, a difference may

arise between the value of the fund and the payout equal to
[
(1 + ra)N o

0 −
(
1 + rf

)
N o

1

]
θf ,

where
(
1 + rf

)
N o

1θ
f is the total pension benefit payout to the old generation. The

young are the residual claimants of the fund and receive this difference. Denoting the

generational account per old person in period 1 by G:

G = θp + θww +

[(
1 + rf

)
− N o

0

N o
1

(1 + ra)

]
θf .

Defined contribution (DC)

The DC scheme is discussed purely as a benchmark in which risk sharing between the

two cohorts is completely absent. For this reason, it is not discussed in the formal

analysis below. In a DC system the pension fund invests the contributions of the old

generation in period 0 and pays out whatever these investments turn out to be worth

in period 1:
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(
1 + rf

)
θf =

N o
0

N o
1

(1 + ra)θf ,

which can be rewritten as:

rf =
N o

0

N o
1

(1 + ra)− 1. (3.13)

Therefore, the payout and the value of the pension fund coincide in every state of the

world and there is no residual claim left for the young generation. This implies that

the generational account per old person in period 1 under a DC system simplifies to:

G = θp + θww. (3.14)

Note that the pension assets of the non-surviving members of the generation go to the

survivors.

Defined real benefit (DRB)

Under a DRB system, the pension fund promises to provide each retired individual

with a given real benefit of size p:

p =
(
1 + rf

)
θf , (3.15)

where rf is the return to the pension fund contribution which will be determined by

the so-called ”actuarial fairness condition” to be discussed below.

In period 1 the pension fund will have accumulated assets equal to (1 + r)Bf +(
1 + rkn

)
Kf . Hence, the difference between the total benefit payout and the assets of

the pension fund equals

(
1 + rf

)
N o

1θ
f − (1 + r)Bf −

(
1 + rkn

)
Kf .

The generational account per old person in period 1 is equal to:

G = θp + θww +
(
1 + rf

)
θf − 1

N o
1

[
(1 + r)Bf +

(
1 + rkn

)
Kf
]
. (3.16)
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Defined wage-indexed benefit (DWB)

Under a DWB system, the pension fund benefit is indexed to the aggregate wage sum:

(
1 + rf

)
θfN o

1 = θdwbNy
1w, (3.17)

where Ny
1w is the total wage bill and parameter θdwb links the pension payout to the

total wage bill. This parameter is also determined by the actuarial fairness condition

discussed below.

The return to the old generation on their pension contribution is stochastic, because

the size of the young generation is unknown when the contribution is made, while the

wage rate is only determined by market forces after the shocks have materialised and

depends on the a priori unknown size of the young generation and level of productivity.

Hence, if the realised total wage bill exceeds the expected total wage bill, the payout

of the pension fund is higher than expected. This structure is intended to capture

indexation of occupational pension benefits to aggregate wage growth, which exists

in some funded pension schemes in Germany, the Netherlands, Norway, Slovenia and

Sweden (OECD, 2011).

The difference between the total pension benefit payout and total assets of the

pension fund is:

[(
1 + rf

)
N o

1 − (1 + ra)N o
0

]
θf = θdwbNy

1w −
[
(1 + r)Bf +

(
1 + rkn

)
Kf
]
. (3.18)

Hence, in this case the generational account per old person in period 1 is:

G = θp + θww +
Ny

1

N o
1

θdwbw − 1

N o
1

[
(1 + r)Bf +

(
1 + rkn

)
Kf
]
. (3.19)

3.2.2 Individual budget constraints and generational accounts

In period 0, each individual old person receives his deterministic endowment η, pays

the mandatory pension fund contribution θf , and invests the remainder of his income

in bonds, Bp

No
0
, and physical capital, Kp

No
0
:
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η =
Bp

N o
0

+
Kp

N o
0

+ θf , (3.20)

where Bp and Kp are the aggregate private investments in real bonds and physical

capital, respectively.

In period 1, the surviving members of the old generation receive the returns on

their private investments plus their pension benefits, while the members of the young

generation receive their wage plus the residual (potentially negative) value of the pen-

sion fund. In addition, the non-pension assets of those old generation members that

do not survive until period 1 are collected by the government and distributed evenly

across all individuals alive in period 1. Thus, in period 1 each individual alive receives

a lumpsum ”bequest” τ , such that

co = (1 + r)
Bp

N o
0

+
(
1 + rkn

) Kp

N o
0

+
N o

0

N o
1

(1 + ra) θf + τ +G, (3.21)

cy = w + τ − N o
1

Ny
1

G, (3.22)

where τ is given by:

τ =
N o

0 −N o
1

N o
1 +Ny

1

[
(1 + r)Bp +

(
1 + rkn

)
Kp
]
.

3.2.3 Individual and firm optimization

The model is solved by backward induction. A continuum of perfectly competitive

representative firms, with mass normalized to unity, produce according to (3.3) and

maximize period-1 profits AF (K,L)−wL− rkK over labour L and capital K, taking

the wage rate and rental rate on capital as given. The first-order conditions are:

AFL = w, (3.23)

AFK = rk, (3.24)

where the subscripts on F denote its first-order partial derivatives.

In period 0, the old generation decides on the allocation of its savings over the two
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assets. Subject to (3.20) they maximize (3.1) over Bp

No
0

and Kp

No
0
, where co is given by

(3.21). The first-order condition is:

(1 + r) E0 [ψu′ (co)] = E0

[
ψ
(
1 + rkn

)
u′ (co)

]
. (3.25)

Finally, the so-called ”actuarial fairness condition” of the pension fund states that,

in expectation, the pension fund should not redistribute resources between generations.

This condition is based on the work of Yaari (1965) that shows that in a model with

lifetime uncertainty, the actuarially fair rate of return on an annuity is higher than

the market interest rate. The rate of return on an annuity contains a mark-up for

mortality risk. The reason for this is the zero-profit condition for insurance companies

offering the annuities. An insurance company that would try to sell annuities with a

rate of return below the actuarial fair one would be driven out of the market by other

insurance companies offering a rate of return closer to the actuarial fair rate.

In the setting in this chapter, the pension fund effectively provides an annuity,

because the contribution paid to the pension fund is not part of the bequest if an

individual dies and can be used by the pension fund to increase the benefits to surviving

participants. Analoguous to Yaari’s setup, the actuarial fairness condition is written

as:

θf E0

[(
1 + rf

)
N o

1

]
= θfE0 [(1 + ra)N o

0 ] , (3.26)

where the left-hand side represents the expected total pension fund payout and the

right-hand side represents the value of the assets in the pension fund expected at the

moment that the fund makes its investments.

For the DRB pension system, p =
(
1 + rf

)
θf , which is deterministic, so that the

actuarial fairness condition can be rewritten as:

p E0 [N o
1 ] = N o

0θ
f E0 (1 + ra) ,

⇒ p = θf
N o

0

E0 [N o
1 ]

E0 (1 + ra) . (3.27)

For the DWB system, using (3.17) the actuarial fairness condition (3.26) can be written
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as:

E0

[(
1 + rf

)
N o

1

]
= N o

0 E0 (1 + ra)

⇒ θdwb = θf
N o

0

E0 [Ny
1w]

E0 (1 + ra) . (3.28)

3.2.4 Market equilibrium conditions

The goods market equilibrium conditions in periods 0 and 1 are (3.4) and (3.5), re-

spectively. Equilibrium in the labour market requires that the amount of labour L

demanded by firms is equal to Ny
1 . Equilibrium in the capital market requires that

K = Kp +Kf , (3.29)

while, with zero net outstanding debt, equilibrium in the market for risk-free debt in

period 0 requires that:

Bp +Bf = 0. (3.30)

Finally, the factor prices are determined as w = AFL (K,Ny
1 ) and rk = AFK (K,Ny

1 ).

3.3 Optimal pension policy

This section investigates the optimal pension parameter settings and checks whether the

pension system designer is able to mimick the social planner’s solution. The assumed

objective of the pension system designer (for example, the government) is a utilitarian

maximisation of the welfare of the pension system participants. Hence, the pension

system designer solves the following problem

max
Π
{W ≡ E0 [N o

1u (co) +Ny
1u (cy)]} , (3.31)

where Π is the set of instruments (pension system parameters) available to the pension

system designer, subject to the resource constraints ((3.4) and (3.5)), the individual’s

and firm’s optimality conditions ((3.23), (3.24) and (3.25)), the actuarial fairness con-

dition (3.26), and the market equilibrium conditions (3.29) and (3.30). In its choice
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of the optimal pension parameters, the pension designer internalizes how individuals

react to changes in those parameters (see Chamley, 1986; Chari et al., 1994, for a de-

tailed treatment of this method). The set Π under a DRB, respectively a DWB system,

consists of the following parameters:

Πdrb =
{
θp, θw, Kf , p

}
,

Πdwb =
{
θp, θw, Kf , θdwb

}
.

Specific realisations of the shocks A and Ny
1 and the solution for K yield w and rk.

Using the same specific realisations for A and Ny
1 and specific realisations for δ and

N o
1 , realisations of co and cy are obtained via (3.21) and (3.22). Using all probability-

weighted possible realisations of the shock vector ξ and the associated outcomes for

co and cy, W can be computed for the given set of pension system parameters. The

set that generates the highest value for W yields the optimal pension system in this

procedure.

3.3.1 The optimum under perfect demographic foresight

Under perfect foresight about the demographic parameters Ny
1 and N o

1 of the young

and elderly in period 1 the social planner solution can be achieved, as the following

proposition states:

Proposition 3.1. (i) Under a DRB system, the social planner solution can be repli-

cated and only be replicated by setting the pension parameters as:

θp + p = (1 + r)
N o

0 +Ny
1

N o
0 (Ny

1 +N o
1 )
Bf ,

Kf =
Ny

1N
o
0

Ny
1 +N o

0

η, θw =
Ny

1

Ny
1 +N o

1

.

(ii) Under a DWB system, the social planner solution can be replicated and only be
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replicated by setting the pension parameters as:

θp = (1 + r)
N o

0 +Ny
1

N o
0 (Ny

1 +N o
1 )
Bf , Kf =

Ny
1N

o
0

Ny
1 +N o

0

η,

and θw +
Ny

1

N o
1

θdwb =
Ny

1

Ny
1 +N o

1

.

Proof. See Appendix 3.B for the proof.

In the special case in which demographic risks are absent, the pension parameters

are known with certainty at the moment that the old generation takes its investment

decisions. This is the case discussed in Beetsma and Bovenberg (2009). The intuition

for the results closely follows that in Beetsma and Bovenberg (2009). However, there

is a major difference in that their ”full-funding condition” is replaced by the actuarial

fairness condition. The full-funding condition says that the expected return on an

additional euro contributed to the pension fund should be the same as the expected

return on an additional euro invested in any asset traded in the financial market. Here,

this condition is dropped in favour of the actuarial fairness condition, because the

probability of prematurely dying before retirement results in an above-market return

on the contribution to the pension fund made by those who survive into retirement.

The intuition for the parameter settings in Proposition 1 is as follows. Let us

focus on the case of the DRB system. Risks associated with the pension fund’s asset

portfolio are effectively shifted to the young generation, because the old generation

gets a fixed benefit, while the residual risk is carried by the young. Hence, each young

generation member has an individual capital exposure of
(
1 + rkn

) (
Kf/Ny

1

)
, while each

old generation member retains an individual capital exposure of
(
1 + rkn

)
(Kp/N o

0 ).

Here, the capital exposure implicit in the accidental bequest τ is ignored, because the

bequest is identical for young and old individuals. Identical capital exposures among

all individuals are achieved by setting Kf/Ny
1 = Kp/N o

0 , which can be written as Kf =

Kp (Ny
1 /N

o
0 ). Hence, if Ny

1 > N o
0 , then Kf > Kp is needed in order to bestow the same

amount of capital risk on young and old generation individuals. Using Kp +Kf = K,

the equation Kf = Kp (Ny
1 /N

o
0 ) can be rewritten as Kf = [Ny

1 / (Ny
1 +N o

0 )]K, which

can be written as the expression in the proposition by using the resource constraint in



46 Chapter 3

period 0.

The intuition for the expression for θw follows from the fact that for condition (3.11)

to be fulfilled, exposure of all individuals to the realisation of the wage rate must be

identical. Since each old person receives a fixed transfer of size θww, each young person

has to pay a transfer of the size
No

1

Ny
1
θww. Identical exposure of each individual to wages

then requires that
(

1− No
1

Ny
1
θw
)
w = θww, which is equivalent to θw =

Ny
1

Ny
1 +No

1
. Thus,

the combination θw =
Ny

1

Ny
1 +No

1
and Kf =

Ny
1N

o
0

Ny
1 +No

0
η is necessary to simultaneously ensure

identical exposures to w and rkn.

Finally, after having ensured that both generations’ consumption responds identi-

cally to movements in wages and the net return on capital, the expression for θp + p

ensures that the lump-sum first-pillar transfer and the benefit from the funded pillar

are set such that the period-1 consumption levels of the two generations are identical.

Obviously, this expression depends on the sizes of both generations.

3.3.2 Demographic uncertainty

In the absence of perfect foresight about the future sizes of the two cohorts, it is

not possible to design a pension arrangement in period 0 that reproduces the social

planner’s solution. While multiple combinations of the pension system parameters can

reproduce the social planner’s solution under perfect foresight, all these combinations

require the realisations of Ny
1 and N o

1 to be known in period 0. If this is not the case,

then the social planner’s solution is not attained.

It is no longer possible to solve analytically for the optimal pension system ar-

rangement in the presence of demographic risk. In the remainder of the chapter a

numerical analysis is performed to investigate how well the different pension systems

perform in the presence of demographic uncertainty. As already motivated above, only

arrangements that do not depend on the shocks are considered. This means that only

arrangements for which the pension parameters are known in period 0 are considered.
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3.4 Calibration

In the numerical analysis, the pension parameter combination that yields the highest

welfare level W under the assumption that all elements of Π are independent of the

shocks is determined. Under this constraint the optimal solution will in general not

replicate the social planner’s solution. Before turning to the analysis, functional forms

for the utility and production functions need to be specified, as well as assumptions on

the distributions of the various shocks in the model.

For the utility and production functions, commonly-used specifications in macroe-

conomic analysis are adopted. The utility function is of the constant relative risk

aversion (CRRA) format:

u (ci) =
c1−ϕ
i

1− ϕ
, i = y, o,

where ϕ is the relative risk aversion parameter. The baseline value is ϕ = 2.5, which

is close to the median of the values found in the literature (see, for example Gertner,

1993; Beetsma and P.C.Schotman, 2001). However, later ϕ is varied to see how the

results are affected by changes in risk attitude.

Production is given by the Cobb-Douglas function

AF (K,Ny
1 ) = AKα (Ny

1 )1−α ,

where α is the share of national income accruing to the equity providers. The value

assumed is α = 0.3, a value commonly used in the literature. Hence, 70% of national

income accrues to workers.

For each of the four shocks, a 2-point distribution is assumed, with probability 1
2

for

each of the two values that the shock can attain. Therefore, the mean of each stochastic

variable is always the mid-point between the two possible values of that variable. The

amount of uncertainty associated with a shock is measured by absolute value of the

distance between the mean of the shock and its possible realisations. This measure is

denoted by ∆. It can differ over the various types of shocks.

The mean size of the young generation Ny
1 is normalized to 1, such that in expec-

tation both generations are equally large at the moment of birth. The mean of the
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Table 3.1: Parameters

parameter mean ∆
α 0.3
η 1
ϕ 2.5
A 3 0.3
δ 0.5 0.1
Ny

1 1 0.2
N o

1 0.8 0.1

mortality shock ψ is 0.8, so that on average 80% of the old generation members survive

until period 1.1 The mean of the depreciation shock δ is 0.5, which corresponds to an

annual depreciation rate of around 2% over a 30-year period. The remaining param-

eters to be calibrated are η and A. The choice of η is only relevant in relation to the

average value of A. These two parameters determine the scale of the economy and one

of them can be fixed to unity. The choice made is to set η = 1 and set the mean of

the productivity shock A to 3. This mean is chosen so that the numerical simulations

yield a realistic net-of-depreciation return on capital and a realistic return on bonds.

In the numerical experiments, mean-preserving increases in the variances of the shocks

will be considered. The base calibration is summarised in Table 3.1, including the base

values of ∆ for each of the shocks.

3.5 Numerical results

3.5.1 Measures for welfare comparison

Two welfare comparisons are conducted. First, welfare is compared under the optimal

pension fund arrangement to welfare under the laissez-faire situation. Second, welfare

1According to the 2010 tables of the Dutch Association of Actuarial Scientists (AG, 2010), the
probability for a newborn to survive until the current mandatory retirement age of 65 is approximately
0.87, while the probability of surviving until 67 is roughly 0.84. Ideally, the calibration of ψ would
serve two purposes. One is to capture the probability of surviving until retirement date, while the
other is to replicate the old-age dependency ratio, defined as the number of retired divided by the
number of people of working age. The choice for the value of ψ is made to replicate closely the former
objective. The stylised two generation objective employed prevents the replication of both objectives
simultaneously.
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under the social planner solution is compared to welfare under the optimal pension

fund arrangement. The welfare consequences of introducing a pension arrangement

are measured by calculating the constant perunage increase Ωpf in consumption of

both generations in all possible states of the world that is required to raise social

welfare under the laissez-faire economy to that under the economy with the optimal

pension arrangement. The welfare difference between the economy with the optimal

pension arrangement and the social-planner economy is measured in an analogous way

by Ωsp.

E0

{
u
[(

1 + Ωpf
)
clfo
]

+ u
[(

1 + Ωpf
)
clfy
]}

= E0

[
u
(
cpfo
)

+ u
(
cpfy
)]
,

E0

{
u
[
(1 + Ωsp) cpfo

]
+ u

[
(1 + Ωsp) cpfy

]}
= E0

[
u (cspo ) + u

(
cspy
)]
,

where the superscripts lf , pf and sp on consumption indicate consumption in the

laissez-faire economy, consumption under the optimal pension arrangement and con-

sumption under the social planner solution, respectively.

3.5.2 No demographic uncertainty

To establish some intuition for the numerical results, first the case in which there is

no demographic uncertainty is considered. In this case, the values for the demographic

shocks are fixed at their means, Ny
1 = 1, N o

1 = 0.8.

Table 3.2 reports the instrument settings for optimal pension arrangements. For

the case of a DRB system the optimal arrangement with p = 0 is selected, while for the

case of the DWB system the optimal arrangement with θw = 0 is chosen. Obviously, for

p = 0 to be consistent with the actuarial fairness condition, it is necessary that either

θf = 0 or E0 (1 + ra) = 0. If θf is not zero, then E0 (1 + ra) = 0. Table 2 presents a

solution with E0 (1 + ra) = 0. This solution allows the fund to take a short position in

real debt that is slightly larger in absolute value than its long position in capital, the

reason being that the expected net return on capital E0

[
rkn
]

is slightly larger than r.

Because Kf and rkn are tied down by demographic variables and period-0 resources,

equation E0 (1 + ra) = 0 and the arbitrage equation (3.25) determine together Bf and
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Table 3.2: Different pension systems, no demographic uncertainty

DRB DWB
θp -0.76 0.24
θw 0.56 0
θdwb - 0.45
p 0 -
θf -0.01 0.65
Kf 0.5 0.5
Kp 0.5 0.5
K 1 1
Bf -0.51 0.15
Bp 0.51 -0.15
r 0.37 0.37
E
(
rkn
)

0.40 0.40
E (ra) 0 0.39
E (w) 2.10 2.10
E (co) 1.94 1.94
E (cy) 1.94 1.94
Ωpf 0.067 0.067
Ωsp 0 0

r. Equation (3.12) then ties down θf . Individuals from both generations have an

identical exposure to capital income, which implies that Kp/N o
0 = Kf/Ny

1 = 1
2
, and to

labour income in period 1. Hence, they have an identical exposure to both remaining

sources of risk, productivity and depreciation, which are perfectly shared. Because

the two generations are of different size in period 1, the pension system parameters

correct for this to ensure identical exposures at the individual level. Hence, conform

Proposition 1, θw = 1/1.8 ' 0.56 and θdwb = 0.8/1.8 ' 0.44.

3.5.3 Deterministic variation in demographic variables

Table 3.3 shows how under perfect foresight about the future demography the parame-

ters of the optimal pension arrangement change when either the fertility rate Ny
1 or the

survival probability ψ differs from its mean value, while keeping the other demographic

parameter at its mean. The outcomes can be partly obtained by applying Proposition

1. To compare them to the outcomes in Table 3.2, those optimal arrangements are

selected in which p = 0 in the DRB system and θw = 0 in the DWB system.
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Table 3.3: Varying values for demographic shocks

Ny
1 = 0.8 ψ = 0.8 Ny

1 = 1.2 ψ = 0.8 Ny
1 = 1 ψ = 0.6 Ny

1 = 1 ψ = 1
DRB DWB DRB DWB DRB DWB DRB DWB

θp -0.64 0.37 -0.92 0.13 -0.88 0.10 -0.70 0.34
θw 0.50 0 0.60 0 0.63 0 0.50 0.00
θdwb 0 0.5 0 0.40 0 0.38 0 0.50
p 0 0 0 0 0 0 0 0
θf -0.01 0.71 -0.01 0.62 -0.01 0.56 -0.01 0.75
Kf 0.44 0.44 0.55 0.55 0.50 0.50 0.50 0.50
Kp 0.56 0.56 0.45 0.45 0.50 0.50 0.50 0.50
K 1 1 1 1 1 1 1 1
Bf -0.45 0.26 -0.56 0.08 -0.51 0.06 -0.51 0.25
Bp 0.45 -0.26 0.56 -0.08 0.51 -0.06 0.51 -0.25
r 0.25 0.25 0.49 0.49 0.37 0.37 0.37 0.37
E
(
rkn
)

0.27 0.27 0.52 0.52 0.40 0.40 0.40 0.40
E (ra) 0 0.26 0 0.52 0 0.40 0 0.39
E (w) 2.25 2.25 1.99 1.99 2.10 2.10 2.10 2.10
E (co) 1.92 1.92 1.95 1.95 1.75 1.75 2.19 2.19
E (cy) 1.92 1.92 1.95 1.95 1.75 1.75 2.19 2.19
Ωlf 0.089 0.089 0.045 0.045 0.08 0.08 0.054 0.054
Ωsp 0 0 0 0 0 0 0 0
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Because the total capital stock K is fixed by the period-0 resource constraint, a

higher fertility rate Ny
1 produces a higher expected net return rkn on capital and a lower

expected wage rate w. Owing to the trade-off that individuals make between investing

in capital and investing in real debt, the higher expected net return on capital requires

a rise in the risk-free interest rate in order for individuals to be willing to invest in

the risk-free asset. The increase in Ny
1 also produces an increase in Kf . The young

generation carries the residual risk associated with the pension fund’s asset portfolio.

To evenly distribute the exposure to capital risk between the two generations, Kf

needs to make up a larger fraction of the total capital stock if the relative size of the

young generation increases. Given that the volume of benefit payments is kept fixed,

the increase in Kf requires a fall in Bf . Further, an increase in Ny
1 implies a higher

value of θw. For a given value of θw, an increase in Ny
1 implies that, per young person,

a smaller fraction of its wage is taken away by the government and given to the old

generation, since θw is defined per old-generation member. Hence, for a fixed θw, the

young’s exposure to wage risk increases. Therefore, to ensure indentical exposure to

wage risk for all individuals, an increase in θw is needed, thereby raising the exposure

of the old generation members to wage risk. However, the increase in θw raises the

average amount of period-1 resources transfered to the old. To compensate for this

systematic increase in transfers to the old, θp is reduced.

The consequences of the increase in Ny
1 for the optimal pension arrangement under

DWB are qualitatively the same as under DRB. However, because θw is fixed to zero

under DWB, the identical exposures to wage risk now have to be restored through a

reduction in θdwb, which is defined as a share of the total wage sum. Finally, although

a priori θf could go both up or down, for this specific parameter combination the effect

is that it goes down.

Now, the effect of a foreseen increase in the survival probability of the old generation

is discussed. As old generation members do not work in period 1, factor prices and

the return on debt are unaffected. The increase in the survival probability implies an

increase in the old-age dependency ratio. That is, it implies an increase in the number

of retirees N o
1 over the number of people of working age Ny

1 . As a result, under DRB

and for given θw, a larger fraction of the young generation members wage income is
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transfered to the old via the PAYG pillar of the pension arrangement. To restore their

exposure to wage risk, θw needs to go down. However, this implies a smaller average

transfer from the young to the old. To undo this, θp increases.

Analogously, under the DWB system θdwb needs to increase and θp needs to decrease.

Further, under this system θf rises. The reason is that there are more old generation

members, so that the ”survivor-dividend” of the pension fund is smaller. Hence, θf

needs to rise to compensate for this decrease in the survivor dividend. Indeed, for the

actuarial fairness condition to continue to hold in the face of an increase in θdwb and a

fall in E0 (1 + ra), while the term N o
0/E0 [Ny

1w] remains constant, θf needs to rise. The

average return on the pension fund portfolio falls, because the increase in θf leads to a

higher investment in the risk-free asset, while the investment in equity and the factor

prices remain unaltered.

3.5.4 Introducing demographic uncertainty

In this section optimal pension arrangements in the presence of demographic risk are

explored. This is done by introducing each one of the sources of demographic risk

separately, while shutting the other source off. In the final step, both sources are

introduced simultaneously. Two important observations need to be made.

First, in general the social planner solution can no longer be achieved. Second, the

multiplicity of solutions that were obtained under foresight about the demography will

vanish. All four pension system parameters have to be deployed to maximise social

welfare.

Tables 3.4-3.11 display the results of introducing uncertainty about Ny
1 and N o

1 .

This is done by keeping the mean values of Ny
1 and N o

1 at 1 and 0.8, respectively, but

increasing the spread between the possible outcomes of the two-point distributions as

indicated in the tables by ∆Ny
1 and ∆N o

1 , respectively. When considering only one

source of demographic risk, the limiting case in which the spread of the outcomes is

set to zero is also reported. This corresponds to the situation without demographic

uncertainty. One of the solutions in this situation is displayed in the column under

∆Ny
1 = 0 (∆N o

1 = 0). Specifically, in the case of the DRB system when varying ∆Ny
1 ,

the solution is chosen such that p|∆Ny
1 =0 = p|∆Ny

1 =0.1, while in the case of the DWB
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system the solution is chosen such that θdwb|∆Ny
1 =0

= θdwb|∆Ny
1 =0.1

. In other words, those

solutions under demographic certainty are chosen that are ”close” to the solutions

when a minimum level of uncertainty is introduced.

Obviously, under uncertainty about Ny
1 and N o

1 , the solutions for the pension sys-

tem parameters differ from those in Proposition 3.1. To obtain additional intuition

for the solutions under demographic uncertainty, the deviations of the solutions under

uncertainty from those when ∆Ny
1 = ∆N o

1 = 0 are decomposed into two components.

The first component is the change in the average value of the pension system param-

eters under each of the two possible realisations of the demographic parameter under

consideration (Ny
1 or N o

1 ) assuming that these realisations are foreseen with certainty

when the pension parameters are decided. This component arises purely from the

non-linearity of the solutions in Proposition 3.1. As an example, consider the case of

uncertainty about Ny
1 . Then, formally, for each pension system parameter π ∈ Πdrb

or π ∈ Πdwb, the following is computed:

d1 =
π|Ny

1 =N̄y
1−∆Ny

1
+ π|Ny

1 =N̄y
1 +∆Ny

1

2
− π|Ny

1 =N̄y
1
,

where π|Ny
1 =N̄y

1
, π|Ny

1 =N̄y
1−∆Ny

1
and π|Ny

1 =N̄y
1 +∆Ny

1
are the solutions for parameter π under

certainty (computed using Proposition 3.1) for the indicated value of Ny
1 . Here, N̄y

1

denotes the mean of Ny
1 .

The second component measures the change in the solution that is the result purely

from the demographic uncertainty. Formally, for the case of uncertainty about Ny
1 it

is given by

d2 = π|Ny
1∼U{N̄y

1−∆Ny
1 ,N̄

y
1 +∆Ny

1} −
π|Ny

1 =N̄y
1−∆Ny

1
+ π|Ny

1 =N̄y
1 +∆Ny

1

2
,

where π|Ny
1∼U{N̄y

1−∆Ny
1 ,N̄

y
1 +∆Ny

1} is the solution under uncertainty about Ny
1 given by

the discrete uniform distribution with support elements N̄y
1 −∆Ny

1 and N̄y
1 + ∆Ny

1 .

Analytical insight into the signs of d1 for the various pension parameters is obtained

by differentiating the solutions in Proposition 3.1 with respect to Ny
1 or N o

1 . The

results are reported in Appendix B. For DRB, the values of the first- and second-

order derivatives for θp+p are ambiguous. For Kf , the derivative with respect to Ny
1 is
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positive and the second derivative is negative. This means that Kf is a concave function

of Ny
1 and, by Jensen’s inequality, an increase in the spread of the possible values of Ny

1

leads to a decrease in the expected value of Kf . The reason is the correlation between

the realisation for Ny
1 and the return on capital rkn. If Ny

1 is low, there are few young

and the return on capital is low, implying a shortfall in the pension fund which has to

be paid for by relatively few young individuals, which is costly in utility terms. Utility

costs in the low state become increasingly higher as uncertainty goes up (there are

fewer young individuals in the low state), so Kf decreases to make sure the utility loss

in the low state does not become too large. The derivative of Kf with respect to N o
1 is

zero, since only the size of the old generation in the initial period, N o
0 , matters for Kf .

Further, the first derivative of θw with respect to Ny
1 is positive and the second

derivative is negative, implying that θw is also a concave function of Ny
1 and that its

expected value falls when the spread in Ny
1 rises. A low realisation of Ny

1 implies

relatively many old individuals each one of them receiving θww. Since the aggregate

amount of resources transfered to the old generation has to be paid for by relatively

few young individuals, this becomes increasingly costly in terms of young individuals’

utility as the realisation of Ny
1 in the low state becomes lower. Hence, θw decreases to

compensate for the bad low state as uncertainty goes up.

Conversely, the first derivative of θw with respect to N o
1 is negative, while the second

derivative is positive. At a higher realisation of N o
1 the optimal value of θw decreases

by less for a given increase in N o
1 . The reason is that precisely because of the increased

size of the old generation at a higher value for N o
1 a given reduction in θw becomes

more effective in reducing the transfer per young individual. Thus, the average of the

optimal values of θw goes up as N o
1 increases.

Analogous results are obtained for the case of DWB. The signs of the first- and

second-order derivatives of θp with respect to both sources of demographic risk are

ambiguous, while Kf is a concave function of Ny
1 and does not depend on N o

1 . Finally,

the expression from Proposition 3.1 involving the wage-related parameters, θw+
Ny

1

No
1
θdwb

is a concave function of Ny
1 and a convex function of N o

1 .
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3.5.5 Fertility risk

Table 3.4 displays the results for the introduction of uncertainty about Ny
1 , i.e. fertility

risk. For a given DRB pension arrangement, a change in Ny
1 has a variety of effects.

First, if Ny
1 is low, then w is high and rkn is low, which is beneficial for the young.

Second, the wage-linked transfer in the first pillar has to be paid for by fewer young,

increasing the amount to be transfered per young. Third , the lumpsum transfer θp

from the old to the young is divided over less young individuals, increasing the per

young transfer as well. Finally, if Ny
1 is low, then the amount in the pension fund is

not sufficient to pay out the defined real benefit p, because of the lower-than-expected

rkn. This is bad news for the few young people, because of the guarantee they have

given to the old generation.

As a result of these effects, it can be observed that as uncertainty about Ny
1 goes up,

θf , p, Kf and Bf all go down. This means that the size of the funded pillar becomes

smaller and that the ”leverage” in the system for young participants goes down. The

reason is that as the uncertainty about Ny
1 becomes larger, the outcomes for the young

generation when it turns out to be small (Ny
1 is low) can be particularly unfortunate,

and, hence, utility can be particularly low, because of the cost of providing the guaran-

tee p to each old generation member. Specifically, this is the case for a low realisation

of productivity and a high realisation of the depreciation rate. Since the expected cost

to the young generation of providing the guarantee to the old generation rises as the

uncertainty about Ny
1 becomes larger, the utilitarian pension planner lowers p, which

also lowers θf because of the actuarial link between the two pension parameters. Since

the guarantee that the young generation provides becomes more costly in utility terms

as the uncertainty surrounding Ny
1 goes up, the size of the guarantee goes down. This

can be seen from the fact that rf goes down for increasing uncertainty about Ny
1 (re-

member that for the DRB case this is defined as p
θf
− 1 and is thus the guaranteed

return per old generation member). This is corroborated by the results from Table 3.5,

where for the DRB system it can be observed that d2 ranges from -0.0037 to -0.0317

for the solution for θf and from -0.0036 to -0.0318 for the solution for Kf .

Moreover, for the first pillar, θw falls as uncertainty about Ny
1 rises. This compen-

sates for the nonlinearity in the movement in w. If Ny
1 is low, the wage rate is very
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high, while for at high Ny
1 the wage rate does not go decrease quite as fast when Ny

1

rises due to the Cobb-Douglas specification of the production function. To prevent the

wage-linked transfer from becoming very burdensome for the young agents alive when

Ny
1 is low, θw goes down slightly. Decreasing θw in this fashion causes redistribution

from old to young, because the average wage linked transfer goes down. To offset this

redistribution, θp rises, which implies that the lump-sum transfer from old to young

goes down on average.

For the DWB system, an almost identical response to the introduction of Ny
1 risk

can be observed from Tables 3.4 and 3.5: the second-pillar parameters θdwb, θf and

Kf all fall to prevent the occurrence of truly bad outcomes for the young generation.

Parameter θw goes down, and to prevent systematic redistribution θp needs to be raised.

Finally, both systems can handle the presence of fertility risk very well; the welfare

gains compared to the laissez-faire situation continue to be sizable (an increase in the

certainty-equivalent consumption of 4,5% to 6%), while the welfare loss compared to

the social planner’s solution remains very small (on the order of magnitude of 0,001%).

3.5.6 Mortality risk

The results for the case with mortality risk, ψ, as the only source of demographic

uncertainty are displayed in Tables 3.6 and 3.7. For the DRB system, all mortality

risk falls on the young generation, since both the first- and second-pillar benefits are

fixed per old generation member. To ensure that the income of the young generation

members does not fluctuate too much, the mortality risk the young generation runs

through the second pillar is reversed. This is done by setting the pension fund contri-

bution θf and the pension fund benefit p at negative values. To prevent distortions of

risk sharing of the financial shocks, this is achieved by a large negative pension fund

position in bonds. The move in the bond portfolio means that the old generation now

borrows money from the pension fund, invests this privately in bonds and pays back

a per-surviving old amount of p to the fund in period 1. This means that the risk the

young generation runs is now reversed: if fewer than expected old generation members

survive until period 1, there is a funding shortfall in the pension fund. This contrasts

with the mortality risk transmitted through the first pillar, where the parameters only
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change to compensate for the nonlinearity in wage income w. Here, a smaller-than-

expected old generation implies a lower aggregate transfers. Hence, the first and second

pillars hedge each other implying a more even distribution of mortality risk across the

generations. The first-pillar settings of θw and θp move into the same direction as in

the case of fertility risk: θw falls as uncertainty increases and θp becomes less negative

to compensate for the redistribution effect of the change in θw.

Under the DWB system, mortality risk is more evenly distributed across generations

through the set-up of the pension fund. In the first pillar, the young generation still

bears all the mortality risk. However, in the second pillar, the total payout of the

fund depends on the aggregate wage sum, which does not depend on the size of the

old generation. Hence, the mortality risk associated with the second pillar falls on the

old generation. Thus, by construction the DWB system distributes mortality risk over

the different generations and there is no need – as there is in the DRB system – to

hedge mortality risk by making second-pillar pension savings negative. Therefore, the

pension designer can afford to pay more attention to the distribution of the financial

shocks.

As in the case of fertility risk alone, θp becomes less negative and θw becomes smaller

when uncertainty increases. Similarly, in order to limit the impact on consumption in

the bad state in the second pillar, θf and θdwb decline as uncertainty rises. In terms

of welfare, the DWB system deals slightly better with mortality risk than the DRB

system, since its set-up is more amenable to evenly distributing the effects of a mortality

shock. However, compared to the welfare gains that are obtained relative to the laissez-

faire solution (between 4.5% to 4.7%), the difference between the two systems is very

small.

3.5.7 Simultaneous presence of both types of demographic

risk

Varying fertility risk with constant mortality risk

Finally, the combined effect of the presence of both sources of demographic uncertainty

are analyzed. In Table 3.8 the results when varying fertility risk, while mortality risk is
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kept constant at ∆N o
1 = 0.1 are displayed. For the DRB arrangement, mortality risk is

shared in the same way as in the case when mortality risk was the only source of risk,

by decreasing θf and p to -0.25 and -0.44 respectively. Since this prohibits sharing of

fertility risk the way this was done previously (through increases in θf , Bf and p), this

has to be done in another way. Fertility risk is compensated for by having both θw and

Kf going down. The decrease in θw ensures that in case of a bad fertility shock – the

young generation turns out to be small – the burden on individual young generation

members does not become too high. However, this also shifts more productivity risk to

the young generation. To mitigate this effect, Kf is reduced and, thus, Kp is increased.

This shifts some of the productivity as well as some of the depreciation risk to the old

generation. As the variance of the fertility shock rises, these effects become more and

more pronounced. To compensate, θw and Kf have to fall by more.

The DWB system turns out to be more robust to the presence of two types of

demographic risks. Since for both the fertility shock and the mortality shock the

changes in the pension fund parameters were qualitatively the same – a decrease in

the size of the second pillar and an increase in the size of the wage-linked transfer

in the first pillar, and the lump-sum first pillar transfer becoming negative to offset

the redistributive impact of the increase in θw – the parameters are simply set as an

average of the parameter settings under the separate demographic risks.

Not surprisingly, given that the DWB system is better suited for handling the

presence of both types of demographic risks simultaneously, the welfare gains under

the DWB system are slightly higher than under the DRB system. The presence of

two sources of demographic risk causes the resulting allocation of consumption to both

generations to be more remote from the social planner’s solution than when only one

source of demographic risk is present. Therefore, the shortfall from the welfare gain

under the social planner has become slightly higher than in the cases with only one

source of demographic risk.

Varying mortality risk with constant fertility risk

In Table 3.10 fertility risk is kept constant at ∆Ny
1 = 0.2, while the uncertainty sur-

rounding the mortality shock is increased progressively. The same patterns are observed
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as in the previous cases that included mortality risk. Under the DRB system, the first

two columns provide an illustration of the reaction of the pension system parameters

to the introduction of mortality risk. In the absence of mortality risk (the first column)

the pension system parameters are set to distribute the fertility shock equally across

generations as in Table 3.4. When mortality risk is introduced (the second column,

where the realization of N o
1 is either 0.05 above or below its mean), the funded pillar is

used as a hedge against mortality risk that the young generation runs through the first

pillar by setting θf and p at negative values (-0.19 and -0.31, respectively). However,

with these settings, young generation members run more fertility risk than the old

generation members. The solution then is to shift some fertility risk towards the old

generation by increasing their exposure to the equity return. This is accomplished by

raising Kp and reducing Kf . However, the downside of this is that it also shifts more

productivity and depreciation risk to the old generation. The various consequences are

balanced by raising Kp up to the point at which the additional benefits of increased

sharing of fertility risk no longer outweigh the utility costs of decreased risk sharing

of productivity and depreciation risk. The larger the uncertainty about fertility risk

becomes, the higher the benefits of sharing this risk and the larger (lower) is the op-

timal value of Kp (Kf ). The presence of two sources of demographic risk increases

the shortfall in welfare terms relative to that under the social planner. However, the

increase in the shortfall is still very small compared to the gains as measured in terms

of certainty-equivalent consumption relative to the laissez-faire solution.

For the DWB system, the same result is obtained as in the previous subsection: be-

cause the pension system parameters react in the same way to fertility and mortality

risk, the pension system parameters simply are an average of the parameter settings

that resulted in the presence of each type of demographic risk separately. As before,

the welfare gains under DWB are slightly higher than under DRB, because the optimal

instrument settings under DRB are forced to deviate more from those under the so-

cial planner. Nonetheless, both types of pension arrangement constitute a substantial

improvement over the laissez-faire solution but lead to only small deviations from the

social planner solution.
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3.6 Robustness: varying the degree of risk aversion

In the previous section, the effect of changes in the volatility of the shocks on the

optimal pension system parameters was investigated. In this section, the robustness

of the results for different values of the CRRA parameter φ (which was assumed to be

equal to 2.5 so far) is checked. Both a lower degree of risk aversion φ = 1 (i.e., log-

utility preferences) and a higher degree of risk aversion, φ = 5, are considered. Results

are presented for the three baseline scenarios considered in the previous section: only

fertility risk (∆Ny
1 = 0.2), only mortality risk (∆N o

1 = 0.1), fertility and mortality risk

at the same time (∆Ny
1 = 0.2 and ∆Ny

1 = 0.1). They are found in Table 3.12.

The top panel of the table shows the case with only fertility risk. For both DRB

and DWB, in general the impact of varying the degree of risk aversion on the values

of the parameters is quite limited, indicating that the chosen degree of risk aversion

is immaterial for the results reported so far. As risk aversion becomes lower (i.e.,

φ = 1), slightly more wage risk is shifted to the old generation by increasing in θw

and θdwb, while at the same time slightly more financial risk is shifted to the young

generation by increasing Kf somewhat. The intuition can be extracted from Table

3.5. Here, it was seen for φ = 2.5 that the solutions for both θw, θdwb and Kf under

a pension scheme were slightly lower than the corresponding social planner’s solutions

under perfect foresight. This way young individuals were protected against low income

and utility in the case of a bad combination of shocks. However, when risk aversion is

lower, the penalty in terms of utility when income is low is less severe and, hence, the

optimal pension parameters shift in the direction of the social planner’s solution. The

opposite happens when risk aversion rises. The risk-free interest rate is quite sensitive

to the degree of risk aversion. As individuals become less risk averse, they require a

return on the risk-free bonds that is closer to the expected return on capital, so that the

risk-free rate goes up. Finally, the size of the welfare gains from introducing a pension

arrangement depend quite strongly on the risk aversion parameter: as risk aversion falls

from φ = 2.5 to φ = 1, the welfare gain relative to laissez-faire falls from around 5%

to slightly less than 2% for both DRB and DWB, while raising risk aversion to φ = 5

increases the welfare gain to almost 10.5%. This sensitivity is not surprising, because
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the advantage of having a pension arrangement is tightly linked to the risk-sharing it

provides. If risk aversion becomes smaller the value of having a pension arrangement

that allows for risk sharing goes down. For both lower and higher risk aversion, the

welfare differences between the social planner and the decentralised solutions with

pension arrangements are small. Moreover, the differences become smaller as risk

aversion falls.

The results for mortality risk only and the simultaneous presence of both types of

demographic risk are reported in the middle and bottom panels of Table 3.12. In these

cases varying the degree of risk aversion has a rather small impact on the outcomes,

comparable to the effects for the case of only fertility risk. The directions of the

changes in the parameters is the same as in the case of fertility risk only. Again the

quantitatively largest effects are observed for the risk-free rate and the welfare gains

of introducing a defined-benefit pension arrangement.

3.7 Conclusion

In this chapter intergenerational risk sharing within two-tier pension systems in the

presence of productivity, financial market and demographic risks has been explored.

Compared to the laissez-faire situation, relatively large welfare gains from the presence

of a two-tier pension system with a defined-benefit second pillar are found. The first,

PAYG pillar takes care of appropriate redistribution between the young and the old

generation while also allowing for some sharing of wage risks and demographic risks.

The fully-funded second pillar allows for further risk sharing between the two gener-

ations. This is accomplished by the mismatch between the assets and the liabilities

of the pension fund, where the young are the residual claimants to the pension fund.

Obviously, the size of the welfare gains associated with the pension arrangements un-

der consideration should not be over-emphasized, as the underlying economic model is

necessarily very stylised.

The simulation results suggest that while having a defined-benefit second pension

pillar yields large welfare gains, the exact form in which the benefits are defined is

less relevant, as the welfare differences between the defined-benefit systems under con-
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sideration are very small, irrespective of the degree of uncertainty and the degree of

risk aversion. Moreover, while it is not possible to perfectly replicate the social plan-

ner’s solution in the presence of demographic risks, the defined-benefit arrangements

under consideration yield welfare gains compared to the situation without a pension

arrangement that are very close to the welfare gains realised under the social planner’s

solution. The DWB system performs slightly better in this regard.

An avenue for further research concerns the design of pension arrangements that

are as robust as possible to foreseen and unforeseen changes in the environment. While

changes in the underlying socio-economic environment tend to make adjustments to

pension arrangements desirable, making those changes is often a difficult process be-

cause of the unavoidable conflicting interests. This has been made painfully clear by

the arduous process of switching from the old to a new pension contract in the Nether-

lands. While it is widely recognised that the funded pension promises given under

the old contract are unsustainable in view of past and expected future increases in life

expectancy and the poor performance of the pension funds’ assets during the current

crisis, it has proven to be extremely difficult to agree on the terms of the new contract.

In many instances when reform is contemplated the interests are split along genera-

tional lines. The difficulties in changing the arrangements increase the desirability of

automatic adjustment rules, such as an automatic link between life expectancy and the

retirement age or an explicit loss sharing rule in case the financial position of the pen-

sion fund deteriorates. However, while the game-theoretic aspects of resetting pension

arrangements are highly relevant, they have been underexplored so far.
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APPENDICES

3.A Description of solution of model

Given the set of pension system parameters Πdrb or Πdwb, we solve the model as follows.

The pension contribution θf is tied down by the actuarial fairness condition (3.27) for

the DRB fund and (3.28) for the DWB fund. In particular, in the case of a DRB system

for each combination θp and p that fulfills the condition in the proposition, an outcome

for θf is found that fulfills the actuarial fairness condition. Similarly, for the DWB

system for each combination θw and θdwb that fulfills the condition in the proposition,

an outcome for θf is found that fulfills the actuarial fairness condition. Then, equation

(3.12) pins down Bf = N o
0θ

f − Kf . Next, via (3.30) we obtain Bp = −Bf . Using

the solutions for θf and Bp in (3.20) we obtain Kp and, hence, we also obtain the

total capital stock K = Kp + Kf . Finally, substituting the relevant expression for G

into (3.21) and substituting the resulting expression into (3.25), we are left with an

equation that we can solve for the remaining unknown, r. In solving this equation, we

make use of the firm’s first-order conditions (3.23) and (3.24).

3.B Proof of Proposition 1

3.B.1 Part (i)

A necessary condition for replicating the social planner solution is u′ (co) = u′ (cy),

which simplifies to co = cy. The general expressions for consumption of the young and

of the old are given by equations (3.21) and (3.22), respectively.

Under the DRB system, the generational account is given by equation (3.16). Sub-
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stituting this into the consumption functions (3.21) and (3.22) yields:

co = (1 + r)
Bp

N o
0

+
(
1 + rkn

) Kp

N o
0

+
(1 + r)Bf +

(
1 + rkn

)
Kf

N o
1

+ τ + θp + θww

+ p−
(1 + r)Bf +

(
1 + rkn

)
Kf

N o
1

=
(
1 + rkn

) Kp

N o
0

+ (1 + r)
Bp

N o
0

+ τ + θp + θww + p,

cy = w + τ − N o
1

Ny
1

[
θp + θww + p−

(1 + r)Bf +
(
1 + rkn

)
Kf

N o
1

]
.

Setting co = cy, using that Kp = K −Kf , and rearranging, we obtain:

(
1 + rkn

)(K −Kf

N o
0

− Kf

Ny
1

)
+ (1 + r)

Bp

N o
0

+

(
Ny

1 +N o
1

Ny
1

)
(θp + θww + p)

= w + (1 + r)
Bf

Ny
1

By setting θw =
Ny

1

Ny
1 +No

1
we obtain identical exposure to w on both sides of the equation.

The equation then reduces to:

(
1 + rkn

)(K −Kf

N o
0

− Kf

Ny
1

)
+ (1 + r)

Bp

N o
0

+

(
Ny

1 +N o
1

Ny
1

)
(θp + p)

= (1 + r)
Bf

Ny
1

By setting K−Kf

No
0
− Kf

Ny
1

= 0, hence Kf =
Ny

1

Ny
1 +No

0
K =

Ny
1N

o
0

Ny
1 +No

0
η, where we have used

(3.4), we ensure that consumption of the young and the old responds identically to

rkn. Note that the combination θw =
Ny

1

Ny
1 +No

1
and Kf =

Ny
1

Ny
1 +No

0
K is also necessary to

simultaneously ensure identical exposures to w and rkn. The vector of factor prices is

a function of the productivity and depreciation shocks. Effectively, we have used the

two instruments θw and Kf to force identical exposures of all period-1 individuals to

these fundamental sources of shocks. This leaves us with the equation
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(1 + r)
Bp

N o
0

+

(
Ny

1 +N o
1

Ny
1

)
(θp + p) = (1 + r)

Bf

Ny
1

⇔
(
Ny

1 +N o
1

Ny
1

)
(θp + p) = (1 + r)

(
Bf

Ny
1

+
Bf

N o
0

)
⇔ θp + p = (1 + r)

N o
0 +Ny

1

N o
0 (N o

1 +Ny
1 )
Bf

where we have used the bonds market equilibrium condition Bp = −Bf to obtain the

second line. This completes the proof of part (i).

3.B.2 Part (ii)

Under the DWB system the generational account is given by equation (3.19). Substi-

tuting this into the consumption functions (3.21) and(3.22) yields:

co = (1 + r)
Bp

N o
0

+
(
1 + rkn

) Kp

N o
0

+
(1 + r)Bf +

(
1 + rkn

)
Kf

N o
1

+ τ + θp + θww

+
Ny

1

N o
1

θdwbw − 1

N o
1

[
(1 + r)Bf +

(
1 + rkn

)
Kf
]

= (1 + r)
Bp

N o
0

+
(
1 + rkn

) Kp

N o
0

+ τ + θp + θww +
Ny

1

N o
1

θdwbw,

cy = w + τ − N o
1

Ny
1

{
θp + θww +

Ny
1

N o
1

θdwbw − 1

N o
1

[
(1 + r)Bf +

(
1 + rkn

)
Kf
]}

.

Again, a necessary condition for replicating the social planner solution is to set co = cy.

Doing so, using that Kp = K −Kf , and rearranging, we obtain:

(1 + r)
Bp

N o
0

+
(
1 + rkn

) K −Kf

N o
0

+

(
Ny

1 +N o
1

Ny
1

)[
θp + θww +

Ny
1

N o
1

θdwbw

]
= w +

1

Ny
1

[
(1 + r)Bf +

(
1 + rkn

)
Kf
]
.

Setting θw+
Ny

1

No
1
θdwb =

Ny
1

Ny
1 +No

1
makes the exposure to wages on both sides of the equation

identical. Further, setting Kf =
Ny

1

Ny
1 +No

0
K =

Ny
1N

o
0

Ny
1 +No

0
η results in identical exposure to
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rkn for individuals from both generations. We are then left with:

(1 + r)
Bp

N o
0

+

(
Ny

1 +N o
1

Ny
1

)
θp = (1 + r)

Bf

Ny
1

.

Using that Bp = −Bf , we rewrite this as:

Ny
1 +N o

1

Ny
1

θp = (1 + r)

[
Bf

Ny
1

+
Bf

N o
0

]
⇒ θp = (1 + r)

N o
0 +Ny

1

N o
0 (Ny

1 +N o
1 )
Bf .

This concludes the proof of part (ii).
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3.C Derivatives of expressions in Proposition 1

In this part of the appendix we provide the derivatives of the expressions in Proposition

1.

3.C.1 DRB

∂ (θp + p)

∂Ny
1

= (1 + r)BfN
o
0 (Ny

1 +N o
1 )− (N o

0 +Ny
1 )N o

0

[N o
0 (Ny

1 +N o
1 )]2

= (1 + r)Bf N o
1 −N o

0

N o
0 (Ny

1 +N o
1 )2 Q 0,

∂2 (θp + p)

∂2Ny
1
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1 −N o

0

N o
0 (Ny
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1 )3 Q 0,
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N o
0 (Ny
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1

N o
0 (Ny
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1 )3 Q 0,
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1

= η
(Ny
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0 )N o

0 −N
y
1N

o
0

(Ny
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0 )2 = η

[
N o

0

Ny
1 +N o

0

]2

> 0,

∂2Kf
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1

= −2η
(N o

0 )2

(Ny
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1
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∂θw

∂Ny
1

=
Ny
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(Ny
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(Ny
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1
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N o

1

(Ny
1 +N o
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∂θw

∂N o
1

= − Ny
1

(Ny
1 +N o

1 )2 < 0,

∂2θw

∂2N o
1

= 2
Ny

1

(Ny
1 +N o

1 )3 > 0.
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3.C.2 DWB

∂θp
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∂
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1 /N
o
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∂Ny
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N o
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(Ny
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∂2
[
θw + (Ny

1 /N
o
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Chapter 4

Voluntary Participation and

Intergenerational Risk Sharing in a

Funded Pension System

4.1 Introduction

All over the world countries introduce funded pension systems in anticipation of the

projected rise in aging costs. Often those systems are of the defined-contribution

(DC) type, which means that workers save through a pension fund and at retirement

receive whatever they have accumulated in their own account. Hence, under such

an arrangement much of the potential benefit from intergenerational risk sharing, in

particular risk sharing between workers and retirees, will be lost. However, this need not

be the case if the funded pension scheme is appropriately designed. For example, in the

Netherlands, a country with a large pillar of sector and company pension funds that pay

out benefits defined in nominal terms, risks are shared among generations of workers

and retirees through changes in the contributions paid by the workers and changes in

the indexation of pension benefits and pension rights to wage or price inflation. In

the case of underfunding (low buffers), reduced indexation implies a reduction in the

purchasing power of all generations’ benefits or rights, while, in addition, contributions

paid by working generations may be raised. The opposite tends to happen when the

ratio of assets to liabilities becomes very large. Participation of employees in the system

This chapter is joint work with Roel Beetsma and Ward Romp, and has been published in Euro-
pean Economic Review 56 (2012), pp. 1310-1324.



80 Chapter 4

is mandatory.2 This is important, because a risk-sharing arrangement that is not legally

enforced is only viable when there exists no ex-post incentive to quit the arrangement

whenever a transfer has to be made. In a situation of underfunding of the pension

fund, the young would be tempted to leave the system instead of guaranteeing the

pensions of the retired through higher contributions. If the buffers become too large,

the old will be tempted to close the fund. If participation in a funded pension system

is voluntary, the ex-ante benefits of intergenerational risk sharing may be forgone.

In this chapter, the feasibility and welfare consequences of a funded pension system

with voluntary participation and intergenerational risk sharing is expored. So far, there

hardly exists any formal analysis addressing this issue. Such an analysis is of substantial

policy relevance, because the countries that currently increase or plan to increase the

funded component of their pension systems need to take informed decisions about its

design. In particular they need to decide whether to introduce certain defined-benefit

elements and whether to make participation obligatory.

Ongoing discussions or even reforms take place in many countries. Of particular

relevance for this chapter is the discussion in the U.K. The Department for Work and

Pensions (DWP, 2012) is preparing a revision of the Pensions Act 2011 with the aim

of making ‘auto-enrolment’ of employees in pension schemes provided by the employer

obligatory. At the same time, the European Commission is revising the Directive for

Institutions of Occupational Retirement Provision (IORPs) and plans to have draft

legislation before the summer of 2013 (Barnier, 2012). The current IORP directive

provides minimum standards for supervision and governance of occupational pension

plans. Whether the revision will support or discourage moving towards funded second-

pillar pensions in EU member states will depend to a large extent on the exact details

of the proposal. In the Netherlands, pressure on mandatory pension fund partici-

pation has been growing. The current generosity of funded occupational pensions is

unsustainable due to the ageing of the population, while the financial crisis has left

many pension funds underfunded. Young generations see their contributions rise, while

they are concerned that insufficient assets will remain in the pension funds to secure

2More precisely, participation is mandatory when there is a collective labour agreement between
the social partners (trade unions and firms or employers’ organizations). Except for the self-employed
this is the case for most of the workers.
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their own future pension benefits. Hence, their reluctance to participate in the system

grows. Therefore, social partners, supported by the government, have been working on

redesigning current pension contracts, which should preserve mandatory participation

and the risk-sharing benefits that this brings to all generations involved.

Our analysis takes place in the context of a simple infinite horizon model with two

overlapping generations. Voluntary participation is modelled through a participation

constraint that requires the expected utility from participation to be at least as large

as expected utility under autarky, which is defined as a situation without any form of

pension system and, hence, without any risk sharing between generations. When the

return on the pension fund portfolio is low, the current young make a transfer to the

current retirees. Individuals always have the option to not participate after the current

shock has materialised. Participation yields benefits in terms of intergenerational risk

sharing. However, numerical results show that the ex-post option to not participate in

the system renders a funded system unfeasible for low degrees of risk aversion and when

portfolio returns have low variance. In those circumstances the risk-sharing benefits

will be lost. Increases in risk aversion and uncertainty about the returns raise the

likelihood of a sustainable funded system based on voluntary participation. However,

risk sharing would still be less than under the optimal arrangement with obligatory

participation. Raising risk-aversion and volatility further, we find that the optimal

solutions under voluntary and obligatory participation coincide.

This chapter draws from several strands of the literature. First, there is a literature

on intergenerational risk sharing in pension systems. Bohn (1999b, 2003) analyses such

risk sharing in PAYG pension systems. Krueger and Kubler (2006) find that PAYG

pension systems can only be welfare improving when markets are incomplete, while,

moreover, their welfare effects depend on the degrees of risk aversion and intertem-

poral substitution. Gottardi and Kubler (2011) extend the analysis of Krueger and

Kubler (2006) and Ball and Mankiw (2007) compare risk sharing of an overlapping

generations economy under autarky and in the presence of a full set of state-contingent

assets. De Menil and Sheshinski (2003), Hassler and Lindbeck (1997) and Matsen and

Thøgersen (2004) explore the trade off between a PAYG and a funded pension system.

The optimal relative sizes of the two components of the pension system depend on
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the preferences and the characteristics of the stochastic processes driving wages and

returns. Beetsma and Bovenberg (2009) and Beetsma et al. (2011) explore risk sharing

through a combination of a PAYG and a fully funded system. Finally, Cui et al. (2011)

compare risk sharing in various types of funded pension systems such as an individual

DC scheme, a collective DC scheme and a collective defined-benefit (DB) scheme.

Second, this chapter is linked to the literature on participation constraints. Kocher-

lakota (1996) and Thomas and Worrall (1988) explore risk-sharing between two types

of infinitely-lived agents in which transfers can go both ways between the agents, who

always have the possibility to walk away from the risk-sharing agreement. Krueger and

Perri (2011) allow for a continuum of infinitely-lived agents and explore participation

with limited enforcement when public insurance is introduced into a market in which

private insurance contracts are not fully enforcable. They show that public insurance

can crowd out private insurance, because agents who break the private contract have

the option of joining the public insurance contract. Our setup differs from these other

contributions in that our agents only live for two periods and transfers always go from

the young to the old. The young are prepared to make such transfers because they

expect the future young to also honour the risk-sharing arrangement.

The third strand of the literature to which this chapter is related is that on discon-

tinuity risk in pension systems. Demange and G.Laroque (2001) study risk-sharing in

a PAYG pension system with voluntary contributions, while Demange (2009) explores

political sustainability risk in PAYG systems. In Teulings and De Vries (2006) the

young may be exposed to equity risk already before they enter the labour market, im-

plying that they may have accumulated losses even before they start working. Under

those circumstances young individuals may prefer not to participate in the pension

fund. Bovenberg et al. (2007) also discuss the problem of negative buffers that make it

unattractive for new young generations to enter a pension fund. Other articles explor-

ing discontinuity risk in funded pension systems are van Ewijk et al. (2009), Gollier

(2008), Westerhout (2009) and Molenaar et al. (2011). The latter two articles are

closest to our analysis. Westerhout (2009) employs an infinite horizon model with two

overlapping generations. He quantifies the feasible amount of risk-sharing under the

assumption that the old are bound by their pension contract and the young are free to
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choose whether they will join the fund. They will not join when the financial position

of the fund is weak. Hence, risk sharing is possible only for a limited set of states. An

important assumption is that the return on the pension funds’ assets exceeds that on

private savings. This makes it relatively attractive to join a pension fund. We do not

need to make such an assumption. Molenaar et al. (2011) explore the break-even ratio

of pension fund assets over liabilities at which it is optimal for a participant to quit the

pension fund. They model a Dutch DB pension fund and in this and other respects

their model differs substantially from our model. Moreover, in contrast to our analysis

they only optimise the static asset allocation under the alternative of no participation,

while there is no fully-fledged analysis of the existence and characterisation of equilibria

with voluntary participation.

The remainder of the chapter is structured as follows. In Section 2, the model is set

up and solved for the autarky solution. Section 3 introduces a pension fund and solves

for the optimal transfer rule in the absence of a participation constraint. In Section 4,

we introduce the participation constraint and characterise the various equilibria. This

section also solves for the optimal pension fund rule. Section 5 works out a numerical

example. Finally, Section 6 concludes the main text of the chapter.

4.2 Model and autarky solution

We set up an infinite-horizon overlapping generations model. In each period, a new,

young generation is born. The generation born in period t will be referred to as the

“period-t generation”. Each generation consists of identical individuals and lives for

two periods. In the first period of its life, the generation works, consumes and saves

for its old age. When old in the second period of its life, the generation is retired and

consumes all of its savings. Savings can be invested in a single risky asset. We assume

that subsequent returns on the asset are identically and independently distributed. All

generations are of the same size, which we normalise to unity.

The preferences of an individual born in period t are given by:

Ut = u (ct,t) + βEt [u (ct+1,t)] , (4.1)
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where ct,t denotes consumption in the first period of its life and ct+1,t denotes consump-

tion in the second period of its life. Hence, the first subscript denotes the period in

which consumption takes place and the second subscript denotes the period in which

the individual is born. Function u (.) is increasing and concave on [0,∞) and twice

differentiable.

In the absence of any form of pension system, that is, under “autarky”, consumption

of the period-t generation in the two periods of its life is:

ct,t = wt − st, (4.2)

ct+1,t = (1 + rt+1) st. (4.3)

where wt is the exogenous wage rate, st are private savings under autarky and rt+1 is

the return on savings. The individual solves the intertemporal consumption allocation

problem:

max
st

u (wt − st) + βEt {u [(1 + rt+1) st]} , (4.4)

which implies the first-order condition:

u′
(
cat,t
)

= βEt
[
(1 + rt+1)u′

(
cat+1,t

)]
. (4.5)

Utility under autarky is given by:

Ua
t ≡ u

(
cat,t
)

+ βEt
[
u
(
cat+1,t

)]
, (4.6)

where cat,t and cat+1,t are the optimal consumption levels under autarky.

4.3 Introduction of a pension fund

We introduce a pension system with a simple funding rule. This introduces the pos-

sibility of intergenerational risk sharing. A young person privately saves an amount

st and contributes an amount θ to the pension fund. The fund invests this contribu-

tion in financial assets and pays out the gross return as a pension benefit one period

later. In addition, if the return on the fund’s assets in period t is too low to provide a
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“decent” pension benefit, each individual of the period-t generation pays an additional

re-funding contribution τt, which is used to supplement the benefit to the current old

generation. The transfer τt is constrained to be non-negative.

4.3.1 Individuals

The consumption levels of a period-t generation member are:

ct,t = wt − st − θ − τt, (4.7)

ct+1,t = (1 + rt+1) (st + θ) + τt+1. (4.8)

The individual takes as given the known policy function set by the pension fund and

now maximises (4.1) subject to (4.7) and (4.8). This implies the following first-order

condition for his intertemporal consumption trade-off:

u′
(
cpt,t
)

= βEt
[
(1 + rt+1)u′

(
cpt+1,t

)]
, (4.9)

where cpt,t and cpt+1,t are the optimal consumption levels under participation in period

t.

4.3.2 The pension fund

We assume that the pension fund applies the very simple funding rule given by:

τt =

(r∗ − rt) θ ∀ rt < r∗,

0 ∀ rt ≥ r∗.

(4.10)

We choose this rule, because it is appealing from a practical point of view, as it is

intuitive and it would be easy to implement. It features two parameters to be set by

the pension fund, r∗ and θ. In the remainder of the chapter, we assume that θ is given

and that the pension fund uses r∗ as its policy instrument.3 Figure 4.1 shows the size of

3An alternative would be to vary θ and keep r∗ fixed. The analysis is similar to the analysis
presented here. Because the contribution rate is easier to observe and, hence, to calibrate we choose
to vary r∗. If we also allow for different values of θ, we get a two dimensional feasible region in r∗
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Figure 4.1: Transfer and consumption of young and old
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the transfer τt as a function of the current asset return and the effect that this rule has

on consumption of the young (in the middle panel) and the old (in the bottom panel).

The transfer is rising in the short-fall of the actual market return from r∗ (i.e., as we

move to the left along the horizontal axis in Figure 1). This dampens the sensitivity

of the old’s consumption to fluctuations in financial market returns when compared to

the autarky situation (the dashed line).

The objective of the pension fund is to maximise from an ex-ante point of view the

and θ and the optimal contract would be a combination of these two pension parameters for which
welfare is maximised given that these parameters lie within this feasible region.
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sum of the utilities of the current and all future generations:

V = E0 {u (c1,0) + [u (c1,1) + βu (c2,1)] + β [u (c2,2) + βu (c3,2)] + . . . }

= E0u (c1,0) +
∞∑
t=1

βt−1E0 [u (ct,t) + βu (ct+1,t)]

= E0u (c1,0) +
∞∑
t=1

βt−1E0 [Up
t ] , (4.11)

where E0 denotes the expectation taken at the start of period 1, before r1 has materi-

alised, and Up
t ≡ u (ct,t) + βu (ct+1,t). Notice that the transfer is not a function of the

savings of the previous young generation, but of the time-invariant pension fund rule

parameters r∗ and θ. This implies that all young generations are affected in an identical

way by the funding rule and in expectation the decisions of all young generations will

be identical. Hence, E0U
p
1 = E0U

p
2 = · · · ≡ E0U

p. Using this, we can rewrite (4.11) as:

V = E0u (c1,0) +
1

1− β
E0 [Up] .

Aggregate welfare is maximised by setting r∗ such that the derivative of the objective

function with respect to r∗ equals 0:

∂V

∂r∗
= E0

[
∂u (c1,0)

∂r∗

]
+

1

1− β
E0

[
∂Up

∂r∗

]
= 0.

We call the value for r∗ implied by this first-order condition r∗,opt. Hence, r∗,opt yields

the optimal transfer rule in the absence of a participation constraint.

4.4 The participation constraint

In the previous section we optimised welfare assuming that participation is mandatory.

In this section we relax this assumption. This gives rise to a participation constraint

that needs to be fulfilled to sustain the collective pension scheme. We characterise the

equilibria that arise in the presence of this constraint. Finally, it solves for the optimal

value for r∗ under this participation constraint.

For any period t, we denote the set of possible realisations of the state of the
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world by R ≡ [−1,∞). The particular state that actually materialises in period t

is exhaustively described by the asset return rt in that period, with the continuously

differentiable density function p (rt) on R.

We define participation or lack of participation in the pension fund as:

Definition 1: A young generation in period t is said to participate in the pension fund

if it chooses to follow the funding rule τ = τ (rt) for the current realization rt. It does

not participate if it does not follow this funding rule.

Before we continue the analysis we make the following assumptions for an arbitrary

period t ≥ 1:

Assumption 1: All preceding young generations as of period 1 have participated in

the pension fund. Each period-t young individual is free to choose whether or not to

participate in the pension system after the state rt has materialised.

Assumption 2: If the period-t young decide not to participate, the economy shifts

to autarky and remains in autarky forever after. Hence, none of the future young

generations will ever participate.

In the remainder of this chapter we assume that Assumptions 1 and 2 hold. Using

these assumptions we can write the participation constraint for the period-t young

individual as:

u
(
cpt,t
)

+ β
{
P in
t Et

[
u
(
cint+1,t|in

)]
+ P out

t Et
[
u
(
coutt+1,t|out

)]}
≥ Ua

t , ∀ rt ∈ R, (4.12)

with P out
t = 1−P in

t and Et(·|in/out) the expected value given that the next generation

participates (in) or not (out). For the sake of readability in our notation we have

dropped the dependence of consumption levels on the current return rt. Next period’s

consumption of the current young depends on whether the next young generation

participates or not. If the next young generation participates, the current young receive

cint+1,t in the next period and coutt+1,t, otherwise. P in
t and P out

t denote the current young’s

perceived probabilities that the next young will participate, respectively opt out.
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4.4.1 Recursive formulation of the participation constraint

Since subsequent generations are identical, and assuming that the economy has not

shifted to autarky in the past, the participation constraint for each state of the world

is identical in any period. This means that we can drop the time subscripts and write

(4.12) in terms of current and next-period variables (which are denoted by a prime) as:

u (cp) + β
{
P inE

[
u
(
cin ′|in

)]
+ P outE

[
u
(
cout ′|out

)]}
≥ Ua, ∀ r ∈ R, (4.13)

where a prime denotes next-period variables.

Hence, in our OLG setting, there is a participation constraint analogous to that in

the literature that deals with participation constraints in settings with two types of

infinitely-lived agents, such as Thomas and Worrall (1988) and Kocherlakota (1996).

However, because in our setting the old have no incentive to walk away from the

contract, the pension fund does not need to ensure that it delivers at least the utility

promised in the previous period. Instead, the fund should ensure that it does not violate

the promised funding rule, so that the insurance it promises the current young for the

next period remains credible. Otherwise, the economy falls into autarky (Assumption

2). In addition, in contrast to models with infinitely-lived agents in which transfers can

go both ways, in our model transfers always go from young to old individuals. While

they may have to make a transfer to the current old, the current young depend on

the next period’s young for their own insurance. That implies that we do not have a

repeated game between agents who can punish each other when one of them deviates

from the rule. Hence, the beliefs about the willingness of the next period’s young to

make a transfer are crucial for the current young’s willingness to pay a transfer, as will

become clear below.

The next period’s young will decide not to participate if the transfer they have

to pay is relatively large, i.e. if r′ < r̃′, where r̃′ denotes the threshold value for the

next-period return r′ that makes next period’s young indifferent between participating
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and not participating. Using Bayes’ rule we obtain

P inp(r′|in) = P (in|r′)p(r′) =

0 for r′ < r̃′

p(r′) for r′ ≥ r̃′
,

so we can rewrite the participation constraint (4.13) as:

Ua ≤ Up (r, r̃′) ≡ u (w − sp (r)− θ − τ (r))

+ β


∫ r̃′
−1
p (r′)u [(1 + r′) (sp (r) + θ)] dr′+∫ r∗

r̃′
p (r′)u [(1 + r′) sp (r) + (1 + r∗) θ] dr′+∫∞
r∗
p (r′)u [(1 + r′) (sp (r) + θ)] dr′

 , (4.14)

where the right-hand side is the utility to the young when the current return is r and

the next period’s cut-off return for participating is r̃′.

4.4.2 Equilibrium definition

We explore equilibria that are defined as follows:

Definition 2: A recursive equilibrium with participation is an autarky savings decision

sa, an autarky value Ua, a pension funding rule {τ (r)}, a set of savings decisions under

participation {sp (r)}, values under participation {Up (r, r̃′)}, a current cut-off return

r̃ and expectations about the next period’s cut-off return r̃′, such that

1. For any r, given the funding rule and expectations about future participation,

the savings decisions {sp (r)} solve the young generation’s optimization problem.

2. For r < r̃, Up (r, r̃′) < Ua, while for r ≥ r̃, Up (r, r̃′) ≥ Ua.

3. The cut-off return for the current young, r̃, computed given the expectation about

the future cut-off return r̃′, equals the cut-off return for the next period’s young,

r̃′.
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4. For at least one element r ∈ R, the funding rule sets τ (r) > 0 and has Up (r, r̃′) ≥

Ua.

4.4.3 Solutions for r̃

The cut-off return r̃ depends on the size of the current transfer prescribed by the

funding rule and the current belief about the cut-off return of the young in the next

period. If r ≥ r∗, the current young would certainly want to participate, so the cut-off

return cannot exceed r∗. Because subsequent young generations are identical in all

respects under the assumption that all preceding young generations have participated

in the pension fund, the cut-off return must be the same for every young generation

that still has the option to participate. This implies that r̃ = r̃′ = (r̃′)′ = . . . .

An equilibrium solution for r̃ requires that if the current young believe that the next

young generation has the same threshold, then these current young want to participate

if confronted with a return higher than this threshold and want to opt out if confronted

with a lower return. That is, r̃ is such that

Up (r, r̃′ = r) < Ua for all −1 ≤ r < r̃

Up (r, r̃′ = r) ≥ Ua for all r̃ ≤ r ≤ r∗
. (4.15)

Here, Up (r, r̃′ = r) is the utility from participation under the assumption that the next

generation uses the current portfolio return as the cut-off return.

As the Appendix shows, the derivative of Up (r, r̃′ = r) with respect to r is the sum

of a positive and a negative term and its sign is generally indeterminate. The negative

term measures the utility cost of the extra transfer the current generation has to make

this period. The positive term measures the benefit from extra insurance, because

the future young have a higher threshold. This indeterminate derivative complicates

our analysis. However, as the Appendix also shows, Up(r, r̃′ = r) is equal to Ua and

upward sloping in r = r∗. That is, it approaches Ua from below as r approaches

r∗. In the examples below, we will work with a constant relative risk aversion utility

specification. Plots of the resulting function Up (r, r̃′ = r) show that it is always convex

on r ∈ [−1, r∗]. Henceforth, we restrict ourselves to the case in which Up (r, r′ = r̃) is
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convex in r on this interval. Under this assumption, depending on whether Up (r, r̃′ = r)

is larger or smaller than Ua at r = −1, there are three possibilities as illustrated by

Figure 4.2, which as a function of r plots the function ∆p (r) ≡ Up (r, r̃′ = r)− Ua:

Situation 1: If ∆p (r) < 0 at r = −1, then Up (r, r̃′ = r) < Ua for all −1 ≤ r < r∗.

This is the situation depicted by the lowest curve in Figure 4.2. In this case, r̃ = r∗

is the only threshold that is consistent with our equilibrium definition. This threshold

implies that the pension fund collapses as soon as r < r∗, so there can effectively be

no risk sharing via a pension fund.

Situation 2: If ∆p (r) = 0 at r = −1, then Up (r, r̃′ = r) < Ua for all −1 < r < r∗.

In this case, depicted by the middle curve in Figure 4.2, equation (4.15) has exactly

two solutions for r̃, namely r̃ = −1 and r̃ = r∗. This first solution implies that if

the current young believe that the next period’s young will participate in the pension

system with certainty, then in the worst scenario today (i.e. r = −1), the current

young are indifferent between participating and not participating. Hence, the pension

system continues to exist forever.

Situation 3: If ∆p (r) > 0 at r = −1, as depicted by the upper curve in Figure 4.2,

r̃ = −1 is a corner solution, because under the belief that the next period’s young

will always participate the current young have higher utility from participating in the

pension system than under autarky, even if they have to pay the highest possible

transfer. Again, r̃ = r∗ is also a solution. Finally, there exists a third solution −1 <

r̃ < r∗, such that Up (r, r̃′ = r) = Ua.

4.4.4 Properties of the solutions for r̃

We shall now further analyse Situation 3, because Situation 1 effectively excludes the

possibility of risk sharing via a pension fund, while Situation 2 corresponds to a very

specific parameter combination. In Situation 3, if the current young, given their belief

that the next period’s young will participate in every state (r̃′ = −1), are also willing

to participate, there exist three solutions, namely r̃ = −1, r̃ = r∗ and a solution

−1 < r̃ < r∗. The first two solutions are stable, while the third is a knife-edge solution

that will never be realised unless the current young start with an initial belief at exactly
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Figure 4.2: Net benefit from participation

Case 3 
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Case 1 

0 
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p(r) 

-1 

Current return (r) 

that point. Let us denote this solution by r̃u. Which one of the two stable equilibria

is reached depends on the initial belief of the current young.

Initial belief lies between -1 and unstable solution

If the current young initially believe that the cut-off return r̃′ of the next young gen-

eration lies between −1 and r̃u, then the economy will end up at the equilibrium with

r̃ = −1. We illustrate this case using Figure 4.3, in which we plot the solid curve

∆p (r) as a function of r and the dashed curves Up (r, r̃′)−Ua for three different values

(r1 > r2 > −1) of r̃′. Note that there exist an infinite number of such curves, one

for each possible belief about next-period young’s cut-off value r̃′. Since Ua does not

depend on r̃′ and the insurance value of participation is lower as the next generation’s

threshold is higher, U(r, r̃′ = r1) < U(r, r̃′ = r2) < U(r, r̃′ = −1) on the whole interval

r ∈ [−1, r∗].

Take an arbitrary starting value r1 between −1 and r̃u for r̃ and assume that the

next generation uses the same threshold. This corresponds to point (A) in Figure 4.3

where the lower dashed line crosses the solid line. This return r1 cannot be the cut-off

return r̃ of the current young since there are lower returns for which the current young
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Figure 4.3: Stable solution with participation
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are also willing to participate given their beliefs about the future’s young generation’s

threshold. While keeping r̃′ fixed at r1, we decrease r, thereby raising the required

transfer and reducing expected utility from participation Up (r, r̃′ = r1) until we reach

the value of r such that Up (r, r̃′ = r̃1) = Ua at r = r2 in point (B). This defines the cut-

off return r̃2 of the current young given their initial belief about future participation.

But, r̃2 < r1, implying that the belief r̃′ = r1 cannot be an equilibrium belief, as in

equilibrium the cut-off returns of all subsequent young generations must be identical.

Hence, the current young update their belief about the next young’s cut-off return to

r̃′ = r2 < r1 to make their threshold consistent with their own (point C). However, at

r = r̃2, Up (r, r̃′ = r2) again exceeds Ua. Lowering r again, we move along the next-

to-lowest dashed line to the left until we hit the vertical axis. This yields the cut-off

return r̃ = −1 of the current young which implies that they will never want to opt out.

If opting out is never optimal for the current young, then it is also never optimal for

future generations, so the threshold consistent with our equilibrium definition is the

stable equilibrium r̃ = r̃′ = −1.
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Initial belief lies between unstable solution and r∗

We illustrate this case using Figure 4.4, in which we again plot the solid curve ∆p (r)

as a function of r and the dashed curves Up (r, r̃′)− Ua for three different values of r̃′.

As before, there exist an infinite number of these curves, one for each possible value of

r̃′. All these curves are upward sloping since the required transfer decreases and the

insurance value stays constant along each line as r̃′ is constant. By definition the curve

Up (r, r̃′) − Ua crosses ∆p (r) at r = r̃′. Finally, these curves are positive (or zero) at

r = r∗ since Up(r, r∗) − Ua = 0 for r = r∗ and all curves with r̃′ < r∗ lie above this

curve.

To show that every initial belief about the next generation’s threshold between r̃u

and r∗ results in the autarky solution r∗ start in point A in Figure 4.4. At r = r1,

we have Up (r, r̃′ = r1) < Ua so that the current young do not want to participate.

However, there are also higher returns r for which they do not want to participate,

but according to their initial belief r̃′ = r1 the next generation does. So, r1 cannot

be the cut-off return r̃ of the current young. While keeping r̃′ fixed at r1, we raise r,

thereby reducing the required transfer and raising expected utility from participation

Up (r, r̃′ = r1) until we reach the value of r such that Up (r, r̃′ = r1) = Ua in point B.

This defines the cut-off return r2 of the current young given their initial belief about

future participation. However, r2 > r1, implying that the belief r̃′ = r1 cannot be

an equilibrium belief, as in equilibrium the cut-off returns of all subsequent young

generations must be identical. Hence, the current young update their belief about the

next young’s cut-off return to r̃′ = r2 (point C). However, at r = r2 = r̃′, one has

Up (r, r̃′ = r2) < Ua. Raising r, we move along the middle dashed line to the right

until we hit the horizontal dashed line again. This yields the new cut-off return r = r3

of the current young. Because r3 exceeds the next generation’s threshold r2, the latter

cannot be an equilibrium cut-off return. We repeat the updating procedure until the

current generation’s cut-off and the beliefs about the next generation’s cut-off converge

to the stable equilibrium value r̃ = r̃′ = r∗.
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Figure 4.4: Stable solution without participation
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4.4.5 Assumption about initial beliefs

The analysis thus far has shown that the only stable equilibrium can be one in which

r̃ = r̃′ = −1 or r̃ = r̃′ = r∗. The latter case is effectively ruled out by requirement

(iv) of Definition 2 of an equilibrium. Hence, in the sequel we limit ourselves to the

former case and we assume that each young generation starts with the belief that the

next-period young will participate in all states of the world, i.e r̃′ = −1. If, given

this belief, the current young are prepared to participate for r = −1, i.e. when the

transfer they have to make is at its largest, we have a sustainable pension fund that

continues to operate in all periods under any state of the world. If for this initial belief

the current young are unwilling to participate for r = −1, then, as the analysis in the

previous subsection has shown, there exists no equilibrium with participation and the

pension system breaks down.

4.4.6 Feasible pension fund rules

Until now we have fixed the contract at an arbitrary r∗ and varied the cut-off value r̃

for young generations. Next, we will vary r∗ to find the set of feasible funding rules by
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the pension fund. This part of the analysis closely follows the analysis by Ljunqvist

and Sargent (2004, pp. 724-726) and Kocherlakota (1996).

We evaluate Up for the worst state of the world (r = −1) under the assumption

that the next period’s young will participate irrespective of the next period’s state of

the world (i.e., r̃′ = −1):

Up (−1,−1) = u (w − sp − θ − (1 + r∗) θ) +

β


∫ r∗
−1
p (r′)u ((1 + r′) sp + (1 + r∗) θ) dr′

+
∫∞
r∗
p (r′)u ((1 + r′) (sp + θ)) dr′

 .

We can check for all possible values of r∗ whether the current young are indeed prepared

to participate or not. Start with r∗ = −1. In this case, the young will never make

a transfer, hence their consumption is constant across all states of the world and the

pension fund effectively operates as an individual DC system. To see what happens

when we increase r∗, we differentiate Up (−1,−1) with respect to r∗. Applying Leibniz’

integral rule, this yields,

dUp (−1,−1)

dr∗
= −θu′ (w − sp − θ − (1 + r∗) θ) +

βθ

∫ r∗

−1

p (r′)u′ ((1 + r′) sp + (1 + r∗) θ) dr′. (4.16)

The first term on the right-hand side of (4.16) is negative: raising r∗ from −1 means

that the young individual has to pay a transfer with certainty because r = −1. The

second term on the right-hand side is positive, except at r∗ = −1. It arises from the

fact that the increase in the transfer from the future young for given r′ raises future

consumption and, hence, future utility to the current young. At r∗ = −1, this term

is exactly zero, because the probability of receiving the higher future transfer is zero

in this case. In differentiating Up (−1,−1) two terms have cancelled out. A marginal

increase in r∗ expands the interval [−1, r∗) over which a transfer is received in the

future. However, this positive contribution to Up (−1,−1) cancels out against the

reduction of utility from the shrinkage of the interval [r∗,∞) over which no transfer is

received.
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Figure 4.5 plots the gain from participating ∆p(−1) = Up (−1,−1)−Ua for various

constant relative aversion utility functions. As shown above, ∆p(−1) initially always

falls below 0. Further from r∗ = −1, the utility loss from the initial transfer is still

low, but the probability of receiving income protection in the worst case scenarios in

the second period grows. For some parameter combinations (as in cases A and B), this

second effect, measured by the term on the right-hand side of (4.16) starts to dominate

and the function increases. For high values of r∗, increasing r∗ further always has a

negative effect on the gain from participating as the insurance value does not offset the

relatively large initial transfer. For values of r∗ close to w/θ− 1, participation is never

attractive, because the initial transfer is so large that positive consumption in the first

period may lead to bankruptcy in the second. To ensure positive consumption this

value of r∗ requires that sp+θ < 0, so the young are privately heavily indebted. But, if

r′ ≥ r∗ then the payout from the pension fund is insufficient to pay the principal plus

interest rate on this debt. In our numerical analysis below, the gain from participating

always shows the same rotated S-pattern.

Figure 4.5 shows that there are intervals for r∗ on which the gain from participating

is positive. In this case, we define r∗,max as the maximum value for r∗ for which a pension

fund is sustainable and r∗,min as the largest value of r∗ < r∗,max for which ∆p(−1) = 0.

However, there are also instances (as in Case C in Figure 4.5) for which no such interval

exists.

4.4.7 The optimal pension fund rule

We continue to focus on the stable equilibrium with participation in Situation 3 and

assume that the funding rule is in place at the start of period 1. Writing out the terms

in the pension fund objective function, equation (4.11), we obtain

E0u (c1,0) =

∫ r∗

−1

p (r)u [(1 + r) sp + (1 + r∗) θ] dr

+

∫ ∞
r∗

p (r)u [(1 + r) (sp + θ)] dr,
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Figure 4.5: Feasible pension schemes when varying r∗
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B 

r*,min 
A 

r*,min 
B 

and

E0U
p =

∫ r∗

−1

p (r)u [w − sp − θ − (r∗ − r) θ] dr

+

∫ ∞
r∗

p (r)u [w − sp − θ] dr

+ β


∫ r∗
−1
p (r)u [(1 + r) sp + (1 + r∗) θ] dr

+
∫∞
r∗
p (r)u [(1 + r) (sp + θ)] dr

 .

Substituting these terms into (4.11), it is straightforward to write the pension fund

objective as:

V (r∗) =
1

1− β


∫ r∗
−1
p (r)u [w − sp − θ − (r∗ − r) θ] dr

+
∫∞
r∗
p (r)u [w − sp − θ] dr

 (4.17)

+
1

1− β


∫ r∗
−1
p (r)u [(1 + r) sp + (1 + r∗) θ] dr

+
∫∞
r∗
p (r)u [(1 + r) (sp + θ)] dr

 .

If an interval
[
r∗,min, r∗,max

]
exists, we denote the value for r∗ ∈

[
r∗,min, r∗,max

]
that

maximises (4.17) subject to the participation constraint by r∗,pc.
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4.5 A numerical example

In this section we work out a simple numerical example of the analysis we have pre-

sented in the previous sections. The purpose of this section is to explore under what

circumstances a funded pension arrangement with voluntary participation exists and,

conditional on this existence, to investigate under what circumstances the participation

constraint leads to welfare losses because it is binding.

We assume that period utility is given by,

u (c) =
c1−γ

1− γ
,

where parameter γ captures the constant degree of relative risk-aversion. The baseline

values of the model parameters are set as follows. Consistent with standard calibrations

in the macro-economic literature, we set γ = 5. Further, we assume that β = 0.5.

With one generation spanning 30 years, this corresponds to an annual discount factor

of 0.977. The wage rate is simply a parameter that determines the scale of the economy

and we fix it at w = 100. Given the wage rate w, we set θ = 10. Hence, this amounts

to a realistic pension contribution rate of 10%. We assume that portfolio returns are

lognormally distributed and independent over time. In setting the parameters for the

portfolio returns, we make use of Campbell et al. (2003) (see Appendix). Specifically,

the average annual portfolio return is set at µ = 0.089, which over a period of thirty

years translates into an average return of 2.14. The standard deviation of the annual

equity return in Campbell et al. (2003) is σ = 0.182, which implies a standard deviation

of 0.91 over a thirty-year period. We will consider a wide range of standard deviations

that comfortably covers this value. Given that the degree of risk aversion is somewhat

on the high side, the conditions for a recursive equilibrium with participation are

relatively favourable.

First, we solve for r∗,opt, the optimal choice of the pension fund for r∗ in the ab-

sence of participation constraints. Subsequently, we solve the autarky problem, which

yields expected utility Ua. Given Ua, we can then solve for the minimum and max-

imum values r∗,min and r∗,max of r∗ for which our stable equilibrium in the presence

of participation constraints still exists as well as the optimum value r∗,pc for r∗ in the
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interval
[
r∗,min, r∗,max

]
. If there is no interval

[
r∗,min, r∗,max

]
for the specific parameter

constellation under consideration, then there is no sustainable pension contract under

voluntary participation as indicated by the non-existence of r∗,max and r∗,pc in the ta-

bles. In these instances we indicate r∗,max and r∗,pc in the tables by “−”. Obviously,

if r∗,max exists, then also r∗,min and r∗,pc exist. However, we do not separately report

r∗,min, because numerically it always lies extremely close to −1. Finally, we compute for

the constrained optimum the ex-ante welfare gains Ωinit for the initial old generation

and Ω for the current young and all future generations. These ex-ante welfare gains

are defined as follows:

E0u
(
cp1,0
)

= E0u
[(

1 + Ωinit
)
ca1,0
]
,

E0U
p = u

[
(1 + Ω) cat,t

]
+ βE0u

[
(1 + Ω) cat+1,t

]
.

We report the results in Table 4.1 for different values of the risk aversion parameter

γ, the annual standard deviation of the portfolio return σ and the pension contribution

θ. The results show that the higher is the degree of relative risk aversion and the

higher is the standard deviation of the asset returns, the more likely it becomes that

participation in the pension fund is beneficial because of the risk-sharing gains that it

provides.

Consider first the case when the pension contribution is at its baseline of θ = 10.

Then, for a relatively low degree of risk aversion γ = 3 the pension fund is viable for

high volatilities of 0.25 and larger, while for a relatively high degree of risk aversion

γ = 7.5 it is viable already for a moderate volatility of 0.15. For a given degree

of risk aversion, the benefit from future risk sharing and thus the attractiveness of

participation increases with the uncertainty about the future asset returns. Vice versa,

for a given variance of the asset returns, future risk sharing and thus participation

becomes more attractive when risk aversion rises. For γ = 7.5, when σ = 0.20 or larger,

the young are even prepared to make a transfer that is larger than under the optimum

without the participation constraint, i.e. r∗,max > r∗,opt. In this case, the participation

constraint is not binding at the unconstrained optimum and, hence, the constrained

optimum coincides with the unconstrained optimum, i.e. r∗,pc = r∗,opt > r∗,min. For
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γ = 3 the pension fund is viable for σ = 0.25 and for γ = 5 it is viable for σ = 0.20,

although in these cases it produces less risk sharing than under the unconstrained

optimum. In this case, r∗,pc = r∗,max < r∗,opt.4

In Table 4.1 we also vary the size of the pension contribution. If θ = 20, then for

two risk aversion – volatility combinations, (γ = 3, σ = 0.25) and (γ = 7.5, σ = 0.15),

the participation constraint now prohibits any risk sharing, while it did not do so before

when θ = 10. We also see that whenever there is voluntary participation under θ = 20,

the values for r∗,max and r∗,pc have dropped relative to the corresponding ones under

θ = 10, hence the scope for risk sharing has become smaller. The intuition for this

is the following. With a transfer by the current young of the format (r∗ − rt) θ, an

increase in θ implies a larger transfer for given rt < r∗ and, hence, to avoid violation

of the participation constraint for given future transfers, r∗,max needs to fall. However,

this reduces the number of states in the future for which the current young will receive

a transfer back and, hence, the insurance value of the pension falls. For some parameter

combinations under consideration the insurance value falls so much that participation

by the young is no longer beneficial to them. A reduction in θ from θ = 10 to θ = 5

yields the opposite effects and the scope for risk sharing increases.

The degree to which the participation constraint is binding is reflected in the welfare

gain associated with participation. If voluntary participation is not optimal then,

obviously, there can be no welfare gain, while once participation has become beneficial,

further increases in risk aversion and the variability of the returns raise the welfare

gains from participation. The welfare gain of the initial old is always higher than

that of all subsequent generations, because they reap the benefits from the potential

transfer, without ever having to pay a transfer themselves.

We also vary the discount factor. A higher discount factor corresponds to a lower

time preference rate, implying that future events become relatively more important.

Hence, voluntary participation becomes more attractive to the young. After all, any

benefit of participation in the form of a transfer only materialises in the future. This

4We have also done a more elaborate numerical analysis in which we varied σ by small steps of
0.02 and extended the range beyond the one reported in the Table 4.1. In all instances the results
were qualitatively identical to those reported here, while for volatilities larger than 0.3 we always find
that r∗,pc and r∗,opt are equal. These results are available upon request.
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is borne out by the results in Table 4.2, in which we vary the discount factor and, for

convenience, repeat the middle panel with β = 0.5. Discount factors of β = 0.3 and

β = 0.7 correspond to annual time preference rates of roughly 4% and 1%, respectively.

In all instances in which the participation constraint is binding, we see that a higher

discount factor raises r∗,pc and r∗,max. The qualitative effects of an increase in risk

aversion or in the standard deviation of the portfolio return that we described earlier

are confirmed for different values of the discount factor β.

So far, the benchmark level of riskiness of the pension and individual investment

portfolios was based on the implicit assumption of a 100% stake in equity. We will now

make the implicit assumption that both the individual and the pension portfolio are

invested half in equity and half in a risk-free asset. This implies that both the standard

deviation and expected value of the overall portfolio return fall. The reason why we

consider this case is that pension funds often invest in a mixture of risk-free assets

and risk-bearing assets (mostly equity) and that we want to see what is the scope for

risk sharing under voluntary participation in this case. The 50-50 division between

the two categories is quite realistic for pension funds in the Netherlands. Obviously,

the optimal individual savings rate in our model takes account of the new situation.

Following Campbell et al. (2003), we calibrate the risk-free rate at 2.1% per year (see

Appendix). Table 4.3 reports the numerical outcomes, where r∗,opt, r∗,max and r∗,pc all

refer to returns on the total portfolio. For relatively low aversion (γ = 3), participation

under the constraint is only attractive when the volatility of the equity returns is at

its highest value σ = 0.3. Again, for higher degrees of risk aversion participation can

be attractive at lower levels of volatility. Hence, for relatively high risk aversion and

medium and high equity volatility, the pension fund is still viable under voluntary

participation, although, not surprisingly, the welfare gains relative to autarky have

dropped due to the reduced risk-sharing benefits that the fund provides.
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4.6 Conclusion

In this chapter we have explored the feasibility and welfare consequences of a funded

pension system with voluntary participation and intergenerational risk sharing. Our

numerical results showed that the ex-post option to not participate obviates the exis-

tence of such a system when both risk aversion and financial market uncertainty are

relatively low. Under those circumstances mandatory participation in the system is

needed to reap the benefits of intergenerational risk sharing. Increases in these param-

eters raise the benefits from risk sharing and make the existence of an equilibrium with

voluntary participation more likely. For intermediate values of these parameters, risk

sharing would still be less than under the optimal arrangement with obligatory par-

ticipation. However, raising risk-aversion and volatility further, the optimal solutions

under voluntary and obligatory participation coincide.

Many countries that are currently trying to expand the funded pillar of their pen-

sion system need to decide on its design. In particular, will it be a defined-contribution

system or will it contain certain defined-benefit elements that allow for intergenera-

tional risk sharing? In the latter case, the question whether participation is obliga-

tory becomes important. Giving individuals too much freedom in deciding whether to

participate or not may lead to a breakdown of the system and, hence, to a loss of the

risk-sharing benefits. The Dutch funded pillar has long and successfully operated under

mandatory participation by the employees and employers and by collectively sharing

risks among all the fund participants. However, the recent shrinkage of the pension

buffers has undermined the confidence in the system, especially among the younger

participants. Once large groups start losing their confidence in the system, the pres-

sure to abolish mandatory fund participation will intensify. To prevent a collapse of

the system and a loss of the benefits from intergenerational risk sharing, it is important

that its planned overhaul leaves young participants with sufficient guarantee that they

will also receive a benefit when they are old.
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APPENDICES

4.A Details on first-order condition pension fund

without participation constraint

The first-order condition is given by

∂V

∂r∗
= E0

[
∂u (c1,0)

∂r∗

]
+

1

1− β
E0

[
∂Up

∂r∗

]
= 0,

where, using Leibniz’ integral rule,

E0

[
∂u (c1,0)

∂r∗

]
= p (r∗)u [(1 + r∗) (sp0 + θ)]− p (r∗)u [(1 + r∗) (sp0 + θ)]

+

∫ r∗

−1

p (r)u′ [(1 + r) sp0 + (1 + r∗) θ] θdr

=

∫ r∗

−1

p (r)u′ [(1 + r) sp0 + (1 + r∗) θ] θdr,

and

E0

[
∂Up

∂r∗

]
= −

∫ r∗

−1

p (r)u′ [w − sp − θ − (r∗ − r) θ]
(
∂sp

∂r∗
+ θ

)
dr

−
∫ ∞
r∗

p (r)u′ [w − sp − θ] ∂s
p

∂r∗
dr

+ β

∫ r∗

−1

p (r)u′ [(1 + r) sp + (1 + r∗) θ]

[
(1 + r)

∂sp

∂r∗
+ θ

]
dr

+ β

∫ ∞
r∗

p (r)u′ [(1 + r) (sp + θ)] (1 + r)
∂sp

∂r∗
dr.

4.B Details on U p (r, r̃′ = r)

4.B.1 Up (r∗, r̃′ = r∗) approaches Ua from below as r ↑ r∗

Recall that Up (r, r̃′ = r) = Ua. Since ∆(r) was defined as Up (r, r̃′ = r) − Ua, all we

need to show is that ∆p approaches 0 from below. Differentiating ∆p(r), with respect
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to r, and using Leibniz’ integral rule, we obtain:

d∆(r)

dr
= u′ [w − sp (r)− θ − (r∗ − r)θ]

(
θ − ∂sp (r)

∂r

)
+ βp(r)u [(1 + r) (sp(r) + θ)]

+ β

∫ r

−1

p (r′)u′ [(1 + r′) (sp(r) + θ)] (1 + r′)
∂sp(r)

∂r
dr′

− βp(r)u [(1 + r)sp(r) + (1 + r∗)θ]

+ β

∫ r∗

r

p (r′)u′ [(1 + r′) sp(r) + (1 + r∗)θ] (1 + r′)
∂sp(r)

∂r
dr′

+ β

∫ ∞
r∗

p (r′)u′ [(1 + r′) (sp(r) + θ)] (1 + r′)
∂sp (r)

∂r
dr′,

which we can write as:

d∆(r)

dr
= u′ [w − sp (r)− θ − (r∗ − r)θ]

(
θ − ∂sp(r)

∂r

)

+ β
∂sp(r)

∂r


∫ r
−1
p (r′)u′ [(1 + r′) (sp(r) + θ)] (1 + r′)dr′

+
∫ r∗
r
p (r′)u′ [(1 + r′) sp(r) + (1 + r∗)θ] (1 + r′)dr′

+
∫∞
r∗
p (r′)u′ [(1 + r′) (sp(r) + θ)] (1 + r′)dr′


+ βp(r) {u [(1 + r) (sp(r) + θ)]− u [(1 + r)sp(r) + (1 + r∗)θ]}

where the term between big curly brackets measures E[(1 + r′)u′
(
cpt+1,t

)
]. According

to the Euler equation (4.9) this equals u′
(
cpt,t
)
, so all terms involving ∂sp(r)

∂r
cancel out

and we are left with:

d∆(r)

dr
= u′ [w − sp (r)− θ − (r∗ − r)θ] θ

+ βp(r) {u [(1 + r) (sp(r) + θ)]− u [(1 + r)sp(r) + (1 + r∗)θ]} (4.18)

Evaluated in r = r∗ this equals:

d∆(r)

dr
= u′ [w − sp (r∗)− θ] θ > 0.
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4.B.2 Second-order derivative of Up (r, r̃′ = r)

The second-order derivative of Up (r, r̃′ = r) equals the second derivative of ∆(r) since

the difference is the constant Ua. Differentiating (4.18) once more gives:

d2∆

d2r
= u′′ [w − sp(r)− θ − (r∗ − r)θ] θ

(
θ − ∂sp(r)

∂r

)

+ βp(r)

 u′ [(1 + r) (sp(r) + θ)]
[
sp(r) + θ + (1 + r)∂s

p(r)
∂r

]
−u′ [(1 + r)sp(r) + (1 + r∗)θ]

[
sp(r) + (1 + r)∂s

p(r)
∂r

]


+ βp′ (r) {u [(1 + r) (sp (r) + θ)]− u [(1 + r) sp (r) + (1 + r∗) θ]} .

The first line is of ambiguous sign, since u′′ (·) is negative and θ and ∂sp (r) /∂r are

both positive (see below). The second line is positive or zero since p (r) ≥ 0 and since

u′ [(1 + r) (sp (r) + θ)] > u′ [(1 + r) sp (r) + (1 + r∗) θ], while the sign of the third line

is ambiguous, since we do not know the sign of p′ (r). This means that we can not

make any general statements about the shape of Up (r, r̃′ = r).

The sign of ∂sp (r) /∂r > 0

Define

EU(r, sp) ≡ u′ [w − sp − θ − (r∗ − r)θ]

− β


∫ r
−1
p (r′)u′ [(1 + r′) (sp + θ)] (1 + r′)dr′

+
∫ r∗
r
p (r′)u′ [(1 + r′) sp + (1 + r∗)θ] (1 + r′)dr′

+
∫∞
r∗
p (r′)u′ [(1 + r′) (sp + θ)] (1 + r′)dr′

 , (4.19)

so we can write the Euler equation as EU(r, sp) = 0. Implicit differentiation gives:

∂sp (r)

∂r
= − ∂EU/∂r

∂EU/∂sp
. (4.20)
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Working out, we have:

∂EU

∂r
= −u′′ [w − sp − θ − (r∗ − r) θ] θ

+ βp(r)(1 + r) {u′ [(1 + r) (sp + θ)]− u′ [(1 + r)sp + (1 + r∗)θ]} ,

The first line of this derivative is positive, since u′′ (·) is negative, while the second

line is greater than or equal to zero, because r ≤ r∗ on the relevant domain for ∆(r).

Further,

∂EU

∂sp
= u′′ [w − sp(r)− θ − (r∗ − r) θ] +

β


∫ r
−1
p (r′)u′′ [(1 + r′) (sp + θ)] (1 + r′)2 dr′

+
∫ r∗
r
p (r′)u′′ [(1 + r′) sp + (1 + r∗)θ] (1 + r′)2 dr′

+
∫∞
r∗
p (r′)u′′ [(1 + r′) (sp + θ)] (1 + r′)2 dr′

 < 0.

Both lines of this derivative are negative, since u′′ (.) is negative. Hence, by (4.20), we

have ∂sp (r) /∂r > 0.

4.C Calibration of the returns process

The portfolio returns follow a lognormal process and are independently and identically

distributed over time. A period in our model corresponds to one generation, which we

take here to span 30 years. We use the Campbell et al. (2003) estimates of annual

returns on stocks and bonds to construct corresponding 30-year figures. Their sample

period covers annual returns over the period 1890 - 1998. We assume the return on

T-bills to correspond to that on a risk-free investment. The average annual real return

on T-bills is 2.101%. Hence, this is the calibrated value for the risk-free rate of return

in our model. Campbell et al. (2003) calculate an average annual equity risk premium

of 6.797%. Hence, the average annual real equity return is 2.101% + 6.797% = 8.898%.

Further, it has a standard deviation of 18.192%. Hence, the variance σ2
30 of lognor-

mally distributed thirty-year equity returns is calculated as σ2
30 = 30 ln

(
1 + var(r)

[E(r)]2

)
=

30 ln
(

1 + 0.181922

1.088982

)
= 0.027525 ∗ 30 = 0.8258. The corresponding standard deviation
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is
√

0.825756 = 0.908711. Next, the mean return over a period of thirty years is cal-

culated as ln
{

[E (r)]30} − 1
2
σ2

30 = ln (12.9002) − 1
2
∗ 0.8258 = 2.1443. To conclude,

we calibrate the logarithm of the equity return to follow a normal process with mean

2.1443 and variance 0.8258 over a thirty-year period.
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Chapter 5

Redesigning the Dutch

occupational pension contract:

Simulation of alternative contracts

involving soft and hard entitlements

5.1 Introduction

Dutch pension arrangements are generally praised for their generosity, their wide cov-

erage and their high degree of funding. The system consists of a public pay-as-you-go

first pillar and a funded second pillar with employees participating in a company pen-

sion fund, an industry-wide fund or an occupation-related scheme for self-employed.

However, the existing pension contract has come under pressure for a number of rea-

sons. First, life expectancy continues to rise, implying that existing commitments to

older workers and retirees are underfunded. Further, the economic and financial crisis

of 2008-2009 produced a simultaneous slump in equity markets and a sharp decrease

in the interest rate on high-quality public debt implying that existing liabilities had

to be discounted at a lower rate. For many pension funds both factors have reduced

funding ratios (the ratio of assets over liabilities) to levels that force them to undertake

restoration measures. The main steering instruments in this regard are the pension

This chapter is joint work with Roel Beetsma and Ward Romp. The basis on which this chapter
builds is the report ‘Doorrekening van verschillende varianten van het nieuwe pensioencontract’written
for MN. The authors gratefully acknowledge the use of data provided by MN for this chapter.
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contribution rate and rate of indexation to nominal wage or price rises. The aforemen-

tioned developments have raised doubts about the robustness of the current collective

pension contract for demographic and financial markets developments. Those doubts

have been made explicit in the Goudswaard Report (Goudswaard, 2010) and have

subsequently led to a headline agreement between the ”social partners”, i.e. the repre-

sentatives of employees and employers, to revise the pension contract. This agreement

(called the pension agreement or pension deal) specifies that social partners and pen-

sion funds can choose to stay in the existing contract with some minor changes, or

move to the new contract in which all entitlements are ’soft’ or conditional, so that no

guarantees are given to participants with respect to their future pension benefits.

In this chapter we present some alternatives to the pension agreement, in which a

participant can have both unconditional ’hard’ entitlements - as in the old contract -

and conditional ’soft’ entitlements - as in the new contract of the pension agreement.

We will quantify the consequences of redesigning the pension contract in such a way at

the level of the pension fund and the consequences at the level of the individual fund

participant. The main question to be answered for the pension fund concerns the im-

pact of the new contract on its funding ratio under regular and extreme circumstances,

while the main questions concerning the individual participants pertain to the distri-

bution of replacement rates under the new contract and the evolution of the transition

phase from the old to the new contract. We investigate various formats for the new

pension contract allowing for financial market shocks. However, we mostly abstract

from demographic shocks, because there is a consensus that the best way to deal with

life expectancy shocks is to change the labor market participation of the elderly and

the retirement age (see Bovenberg and Knaap (2005), Conesa and Garriga (2007) and

Bohn (1999b)).

The various pension contracts considered below feature a number of common ele-

ments. Each year, active participants make a contribution to the fund. In return, they

accumulate entitlements to their future pension. The way the accrual of entitlements

takes place is currently under review and constitutes the focal point of this chapter.

Under the current contract, there exists only one type of entitlement. This is a promise

of a constant annual nominal payment as of retirement age. This payment is supposed
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to be very safe in the sense that, once it has been promised to participants, it can

only be reduced when the degree of underfunding is so large that it can no longer be

undone through deployment of the regular instruments, a situation that is supposed to

be very exceptional. The guaranteed nominal benefits are the main reason why pension

liabilities are to be discounted against a risk-free interest rate.

The new pension contracts are intended to be robust against financial market

shocks. In general terms, this is done by making the contract more complete in the

sense that it will be made clearer ex ante how the consequences of unexpected shocks

will be allocated across the various participants. Practically speaking, this takes place

through the introduction of two types of entitlements. The first type is a very safe

entitlement that we will refer to as a ”hard entitlement”. As described above, all enti-

tlements accumulated until now were intended to be certain in nominal terms, although

in reality they may be less safe than expected, as recent events have made clear. The

second type of entitlement we will refer to as a ”soft entitlement”. Its role is to act as a

buffer against financial shocks, thereby protecting the safety of the hard entitlements.

Of course, it is conceivable that soft entitlements may evaporate completely due to a

sequence of particularly unfortunate realizations in the financial markets. In that case

also the hard entitlements have to be reduced, implying that even hard entitlements

can never be completely safe.

The three new pension contracts differ in the way hard and soft entitlements are ac-

quired. In the first contract, the ’rolling window’ contract, newly accrued entitlements

are soft. After a fixed period, these entitlements are then converted into hard enti-

tlements. In the second contract, the ’fraction’ contract, newly accrued entitlements

consist of a fixed fraction of soft entitlements and hard entitlements. In the third con-

tract, the ’split’ contract, all newly accrued entitlements are soft. If the funding ratio

of the pension fund rises above a certain level, a fraction of the soft entitlements is

transformed into hard entitlements.

Obviously, to guarantee a sufficiently high degree of safety of hard entitlements,

it is necessary to have a sufficiently large buffer of soft entitlements. In fact, we are

particularly interested in computing the likelihood that the stock of soft entitlements

is insufficient to absorb all the financial shocks. The different proposals we consider
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will lead to different distributions of the stocks of hard and soft entitlements across the

various generations. Obviously, different allocations of the two types of entitlements

will have important consequences for the incidence of the shocks across the various

generations. In addition, they may have serious implications for the financial situation

of the pension fund and the extent to which hard entitlements are truly safe.

Under the new proposals, indexation is higher and more readily provided than under

the current system. Hence, pension buffers are lower, while current retirees benefit from

the switch from the old contract to the new contract. Out of the three new proposals,

only the Fraction contract succeeds in effectively guaranteeing hard entitlements and

providing relatively stable indexation and buffers over time without inducing substan-

tial intergenerational transfers. The results suggest that in a system with both hard

and soft entitlements, the only way to prevent substantial intergenerational transfers

is to have all generations accumulate both types of entitlements. Because financial

shocks are absorbed through the soft entitlements, this way the costs and benefits of

those shocks can be spread over all the generations.

The remainder of the chapter is structured as follows. In Section 5.2 we lay out

our model. In Section 5.3, we describe the different designs of the new contract that

we explore. In Section 5.4 we describe the calibration of our model and in Section 5.5

we present the results for the various contracts we consider. Section 5.6 concludes this

chapter.

5.2 The Model

This section describes the set-up of the model.

5.2.1 Demographics

Each period t, there are a total number of Nt individuals, divided over J generations

and I types. Further, Ni,j,t is the number of type i of age j individuals alive at time

t. Hence, Nt =
∑I

i=1

∑J
j=1Ni,j,t. Differences in types of individuals arise because of

differences in skills or in gender. Those differences lead to differences in income within

a cohort.
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We denote by ψj the age-dependent probability for a person that is currently of age

j to survive until age j + 1. We assume that it is constant over time and across the

various types of agents i. Hence, the probability of an individual of age j to survive

until some age l ≥ j + 1 is then given by
∏l−j−1

k=0 ψj+k.

Each year a new generation of size (1 + nt)
∑I

i=1 Ni,1,t−1 is born, where nt is the

growth rate in the size of the newborn generations. We assume that nt is constant.

Hence, nt = nt+1 = · · · ≡ n. The maximum age an individual can reach is J . Hence,

an individual of age J dies for sure the coming year, implying that ψJ = 0. We

neglect the childhood of individuals and assume that they enter the labour force and

become employed immediately after birth at age 1. Further, retirement happens at the

mandatory age R. We denote by Nw
i,t =

∑R−1
j=1 Ni,j,t the number of working individuals

of type i at time t. Hence, the total number of working individuals is given by Nw
t =∑I

i=1N
w
i,t =

∑I
i=1

∑R−1
j=1 Ni,j,t.

5.2.2 Wage income and pension fund contributions

Depending on its type i, an individual in period t earns a wage income wi,t. Over time,

the wage income of all types grows at the exogenous nationwide nominal growth rate

gt:

wi,t = (1 + gt)wi,t−1, ∀i ∈ I, ∀t ≥ 1, (5.1)

gt = g + εgt , (5.2)

where εgt is a shock to aggregate wages in period t with properties detailed in Section

5.2.5.

Each working individual (i.e., individual of age 1 ≤ j < R) of type i pays a

contribution pi,t ≥ 0 to the pension fund. Collectively, pension funds constitute the

”second pillar” of the retirement benefit system. The contribution equals a fraction θ

of income wi,t above the so-called franchise level frt for those who earn more than frt

and is zero otherwise:

pi,t = max [0, θ (wi,t − frt)] , ∀i ∈ I, ∀t ≥ 1, (5.3)
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The franchise is the part of wage income over which no pension contributions are paid

and over which no pension entitlements are accrued. The existence of the franchise

originates in the fact that in the Netherlands the government provides a basic first-

pillar PAYG pension (the ”AOW” in Dutch) for everyone. The second-pillar pension

acquired through participation in the pension fund comes on top of the AOW. In other

words, contributions to and accrual of entitlements in the second pillar apply only to

the part of the wage above the franchise. Note that since all individuals of type i earn

the same wage, irrespective of their age j, the pension contribution does not depend

on j. The franchise is indexed to inflation each year, since the AOW is indexed to

inflation under our baseline:

frt = (1 + πt) frt−1,

where πt is the period t inflation rate.

5.2.3 Second-pillar entitlements and liabilities under the old

contract

Entitlements

The baseline of the old contract features only one type of pension entitlement. In each

period t, the accrual of new pension entitlements mi,t of an individual of type i equals

the accrual rate µ times the difference between the nominal wage and the franchise:

mi,t = µmax [0, wi,t − frt] . (5.4)

Note that, because the wage is independent of the age j of an individual, the accrual

of new entitlements is also independent of the individual’s age. The new entitlements

built up in a given period t are added to the individual’s beginning-of-period stock

of entitlements Mi,j,t. Depending on the financial situation of the pension fund, the

fund can apply either uniform indexation ωt ≥ 0 or a uniform reduction ωt < 0 to

the existing stock of entitlements accumulated in the pension fund.2 Hence, the law of

2The fund’s decision rules will be described in Section 5.3.
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motion for the stock of entitlements of a working individual is given by:

Mi,j,t+1 = (1 + ωt) (Mi,j,t + µmax [0, wi,t − frt]) ,

while the law of motion for the stock of entitlements of retirees is given by:

Mi,j,t+1 = (1 + ωt)Mi,j,t. (5.5)

The period t second-pillar pension benefit paid out to a type i age j retiree equals his

stock of entitlements at the beginning of the period:

bi,j,t = Mi,j,t. (5.6)

Liabilities

The present value of the pension benefits of all participants together constitutes the

liabilities of the pension fund. Because bi,j,t = Mi,j,t, the liability to each individual of

age j and type i at the beginning of period t is given by:

Li,j,t =

J−j∑
l=R−j

∏l
k=1 ψj+k−1

(1 + rl,t)
l
Mi,j,t, j < R, (5.7)

Li,j,t =

(
1 +

J−j∑
l=1

∏l
k=1 ψj+k−1

(1 + rl,t)
l

)
Mi,j,t, j ≥ R, (5.8)

where rl,t is the l-year interest rate on bonds in period t. The total liabilities of the

pension fund Lt equals the sum of the liabilities to all individuals in period t:

Lt =
I∑
i=1

J∑
j=1

Ni,j,tLi,j,t. (5.9)

Finally, the indicator of the financial health of the pension fund that is relevant for the

fund’s supervisor is the funding ratio Ft given by:

Ft =
At
Lt
, (5.10)
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where At is the value of the fund’s assets at the start of period t.

5.2.4 Assets

The total value of the pension fund’s assets at the start of period t is given by:

At =
(

1 + rft

)
Aendt−1, (5.11)

where rft is the return to the pension fund’s asset portfolio from period t− 1 to period

t and Aendt−1 is the value of the fund’s assets at the end of period t − 1, i.e. after

contributions for period t− 1 have been collected and benefits have been paid out. We

assume that a share α of the pension fund’s total asset portfolio is invested in equity

and a share (1− α) is invested in bonds:

Et−1 = αAt−1, Bt−1 = (1− α)At−1, (5.12)

where Et−1 and Bt−1 are the fund’s equity and bond investments, respectively. The

bond portfolio is constructed to match the maturity structure of the liabilities. Specif-

ically, if a share ζk of total discounted benefit payments (i.e. liabilities of the fund) is

expected to take place after k years time, then the fund invests a share ζk of its bond

portfolio in bonds maturing after k years:3

bk,t−1 = ζkBt−1, ∀k ∈ [1, J ], (5.13)

where bk,t−1 is the amount invested in bonds maturing after k years. Assuming that

the fund invests only in zero-coupon bonds, the return on a maturity k bond at time

t is given by:

1 +Retbk,t =
1/(1 + rk,t)

k

1/(1 + rk+1,t−1)k+1
=

(1 + rk+1,t−1)k+1

(1 + rk,t)k
(5.14)

where rt,k is the yield to maturity on a zero-coupon bond with k years to go until the

face value is paid out. The return on equity is given by 1 + reqt , so that we can write

3Alternatively interest rate swaps could be used with the same pay-off structure as the bond
portfolio.
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the total gross portfolio return as:

1 + rft = (1 + reqt )α +
K∑
k=1

(
1 +Retbk,t

)
ζk (1− α) . (5.15)

Plugging this expression into the law of motion for the fund’s assets we obtain:

At = (1 + reqt )αAendt−1 +
K∑
k=1

(
1 +Retbk,t

)
ζk (1− α)Aendt−1 (5.16)

Then, in period t, after the returns on the equity and bond holdings have mate-

rialised, contributions and benefits are paid. After this, the pension fund rebalances

its portfolio so that the original investment shares α in equity and 1− α in bonds are

restored (and the bond portfolio again matches the maturity structure of its liabilities):

Et = α

(
At +

I∑
i=1

Nw
i,tpi,t −

I∑
i=1

J∑
j=R

Ni,j,tbi,j,t

)
, (5.17)

Bt = (1− α)

(
At +

I∑
i=1

Nw
i,tpi,t −

I∑
i=1

J∑
j=R

Ni,j,tbi,j,t

)
. (5.18)

End-of-period asset holdings of the pension fund are then given by:

Aendt = Et +Bt. (5.19)

Note that because financial market risk is not the only source of risk, even with

”matching investments” (α = 0) the retirees’ benefits still run risk. Moreover, if the

total bond portfolio is smaller than the total value of the liabilities, the pension fund

still faces some financial market risk, because it can not fully match its liabilities with

bonds.

5.2.5 Economic shocks

The modelling of the economic shocks follows closely Beetsma and Bucciol (2011).

There are four stochastic macro-economic variables: the inflation rate (πt), the nominal

wage growth rate (gt), the yield on bonds with a maturity of one year (r1,t) and the
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equity return (reqt ). These variables obey the following processes:


πt

gt

r1,t

reqt

 =


π

g

rb

req

+


επt

εgt

εbt

εeqt

 , (5.20)

where the first vector on the right-hand side contains the averages of the respective

stochastic variables and the second vector on the right-hand side contains the (mean-

zero) shocks to these variables. This vector of shocks follows a VAR(1) process:


επt

εgt

εbt

εeqt

 = B


επt−1

εgt−1

εbt−1

εeqt−1

+


ηπt

ηgt

ηbt

ηeqt

 , (5.21)

where B is a matrix filled with constants (including zeroes). Thus, each individ-

ual shock εit, i ∈ {π, g, b, eq} is a combination of the vector of shocks in the pre-

vious year
[
επt−1, ε

g
t−1, ε

b
t−1, ε

eq
t−1

]′
plus an innovation ηit. The vector of innovations[

ηπt−1, η
g
t−1, η

b
t−1, η

eq
t−1

]′
follows a normal process with mean zero and variance-covariance

matrix Σf .

The full term structure {rk,t}Kk=1 is constructed as follows: each yield to maturity in

the term structure rk,t has a gross mark-up factor νk on the one year interest rate r1,t.

After realization of the one-year interest rate for a given year, we construct the full

term structure by multiplying the mark-up factor of each maturity with the one-year

yield:

rk,t = νkr1,t, ∀k. (5.22)

5.2.6 The timing

Within any period t, events take place in the following order:

1. Participants become one year older or die, a new generation of participatants of

age 1 enters the pension fund and economic shocks and returns materialise.
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2. New pension entitlements are accrued, contributions are paid into the fund and

benefits are paid out to the retirees.

3. The indexation policy is implemented.

4. The asset portfolio is rebalanced to ensure that a share α is invested in equity

and to match the liability structure after indexation.

5.3 Pension fund policy

This section describes the various pension contracts we consider and discusses how

these contracts differ. First, we describe the current contract. Then, we describe

three proposals for the new contract. All three proposals for the new contract split

entitlements in two types: hard and soft. The idea of this division of entitlements is that

the hard entitlements provide the participants with some minimum benefit level during

retirement. These entitlements should be very safe in the sense that individuals can

only lose these entitlements in exceptional circumstances. The soft entitlements form

the buffer around the hard entitlements: shocks to the asset position of the pension

fund are absorbed first by the soft entitlements, so that these fluctuate with the value

of the assets.

For each version of the new contract we consider, we will spell out a policy rule that

addresses precisely how soft and hard entitlements are accumulated by participants in

the pension fund. The total value of entitlements of an individual under the proposals

for the new contract equals the sum of the stocks of hard and soft entitlements:

Mi,j,t = Mh
i,j,t +M s

i,j,t t ≥ 0, (5.23)

where Mh
i,j,t is the stock of hard entitlements and M s

i,j,t is the stock of soft entitlements

of individual i of type j at time t.
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5.3.1 The current contract

Under the current contract, there is only one type of entitlement, as described above.

Whether one can view this entitlement as a hard or a soft entitlement depends on

the interpretation of the pension contract (see also Bovenberg and Nijman (2011)

and Bovenberg and Ewijk (2011)). The supervisor, the Dutch Central Bank (DNB),

considers the entitlements as hard and allows a reduction in those entitlements only in

extreme circumstances.

Contributions are such that they cover the expected future cost of the pension in

terms of benefit payments. We now describe the rule that the pension fund uses to

deal with underfunding and indexation.

Underfunding

Underfunding is defined as a situation in which the funding ratio is below some level F lb.

When the pension fund is underfunded, it has to set up a plan to restore the funding

ratio to at least F lb within three years by using its policy instruments, which consist

of a reduction in indexation, higher contributions and, as a last resort, a reduction in

entitlements.

A reduction in indexation means that the pension fund does not provide sufficient

indexation for the existing stock of entitlements to grow at the same rate as the price

level or the nominal wage rate. This can go so far as to not provinding any indexation

at all, so that ωt = 0. The contribution rate θ can be raised up to a maximum of θ̄.

If setting ωt = 0 and θ = θ̄ for a period of three years is still not sufficient to bring

the funding ratio back to F lb after these three years, the pension fund reduces existing

entitlements (ωt < 0) by as much as is needed to achieve this goal.

Indexation

If the funding ratio exceeds F lb, the pension fund uses the following indexation rule

for the existing entitlements. If the funding ratio exceeds F ub > F lb, then the fund

provides full indexation on all entitlements to either the price level or nominal wage

growth (depending on the indexation goal of the pension fund). Moreover, in this case



Redesigning the Dutch Occupational Pension Contract 125

the fund also provides catch-up indexation to compensate for missed indexation in

previous years to the extent that all missed indexation is compensated and the funding

ratio does not fall below F ub. If the funding ratio is in between F lb and F ub then

indexation is a fraction κt of full indexation according to:

κt =
Ft − F lb

F ub − F lb
. (5.24)

Hence, the rate of indexation provided is

ωt = κtgt, (5.25)

if the fund aims at keeping benefits in line with the nominal wage rate, or by

ωt = κtπt, (5.26)

if the fund aims at keeping the purchasing power of existing entitlements constant.

5.3.2 Proposals for the new contract

We investigate three different proposals for the new pension contract: the Rolling

Window contract, where participants accrue soft entitlements based on a rolling window

formula, the Fraction contract, where participants accrue a fixed fraction of hard and

soft entitlements each year and the Split proposal, where all existing entitlements at

the moment of transition are hard and all newly accrued entitlements are soft.

5.3.3 The Rolling Window contract

The first variant of the new pension contract was suggested by FNV Bondgenoten,

the largest labor union in the Netherlands. We will call it the ”Rolling Window”

proposal because soft entitlements are accrued based on a rolling window formula that

we describe below.

The existing stock of entitlements at the moment t = 0 of the transition from the

old to the new contract will be divided into a share ξ of hard and a share 1− ξ of soft
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entitlements:

Mh
i,j,0 = ξM o

i,j,0 (5.27)

M s
i,j,0 = (1− ξ)M o

i,j,0 (5.28)

where M o
i,j,0 is the stock of ’old’ pension entitlements of individual type i and age j at

the start of period 0 just before the transition to the new system is implemented.

All new entitlements accrued through working are soft entitlements. After Q years,

these entitlements including their accumulated indexation (positive or negative) are

transformed into hard entitlements. Hence, in period t, the stock of soft entitlements

evolves as follows:

M s
i,j,t+1 =



(1 + ωst )
(
M s

i,j,t + µmax [0, wi,t − frt]
)
, j ≤ Q,

(1 + ωst )
(
M s

i,j,t − m̃s
i,j,t−Q + µmax [0, wi,t − frt]

)
, Q+ 1 ≤ j < R,

(1 + ωst )
(
M s

i,j,t − m̃s
i,j,t−Q

)
, R ≤ j < R +Q,

0, j ≥ R +Q,

where ωst is the indexation rate of soft entitlements in year t and m̃s
i,j,t−Q is the amount

of soft entitlements that were earned by working exactly Q years ago, including the

indexation that has been accumulated on those entitlements in the intervening years:

m̃s
i,j,t−Q =

t−1∏
q=t−Q

(
1 + ωsq

)
ms
i,j,t−Q, (5.29)

where ms
i,j,t−Q is the amount of new soft entitlements that was earned by working in

period t−Q. The stock of hard entitlements evolves as follows:

Mh
i,j,t+1 =


0, j ≤ Q,(

1 + ωht
) (
Mh

i,j,t + m̃s
i,j,t−Q

)
Q < j < R +Q,(

1 + ωht
)
Mh

i,j,t, j ≥ R +Q,

where ωht is the indexation rate of hard entitlements in year t.

Hence, at his retirement age R an individual has a stock of R − Q − 1 years of

accumulated hard rights and Q years of accumulated soft rights. After Q years into
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retirement a retiree has a stock of R − 1 years of accumulated hard rights and has no

soft rights left. As before, the calculation of the liabilities and the funding ratio follows

equations (5.7)-(5.10), given that the total stock of rights of an individual is given by

equation (5.23).

We define full indexation of hard entitlements as ωht = πt, if the fund tries to main-

tain the purchasing power of the hard entitlements, and as ωht = gt if it tries to track

nominal wage growth. Full indexation of soft entitlements is defined as ωst = πt + νω,

in the case that the fund tries to track price inflation, and as ωst = gt + νω, in the

case that the fund tries to track nominal wage growth. Here, νω ≥ 0 is a mark-up to

compensate for the higher riskiness of the soft entitlements.

Underfunding

The Rolling Window proposal is designed to adjust entitlements such that a situa-

tion of underfunding never occurs. This is accomplished as follows. If at the start of

some period t, after asset returns have materialised and new pension entitlements have

been earned, the pension fund has a funding ratio below F lb, which serves as a lower

bound on the funding ratio, it marks down the value of its soft entitlements (by setting

ωst < 0) such that Ft = F lb. If, after having completely marked down the stock of soft

entitlements (i.e., ωst = −1), the funding ratio is still below F lb, hard rights will be

marked down (by setting ωht < 0) until Ft = F lb.

This underfunding rule highlights the distinction between the soft and hard entitle-

ments: the soft entitlements are the flexible part of the stock of entitlements that can

be adjusted on an annual basis. They act as a buffer against the financial market risk

that the pension fund faces in its asset portfolio. The hard entitlements are intended to

provide a relatively safe guarantee for a minimal pension benefit at retirement and can

only be adjusted downward once the entire stock of soft entitlements has been wiped

out already.

How well the stock of soft entitlements performs its buffer role obviously depends

on its size relative to the stock of hard entitlements. It also depends on the volatility

of the financial market shocks hitting the pension fund and on the pension fund’s asset
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mix. A fund with a relatively safe asset mix can likely guarantee its hard entitlements

with a relatively small stock of soft entitlements.

Indexation

If the funding ratio exceeds F lb, the pension fund provides indexation with the hard

entitlements receiving priority over the soft entitlements. Specifically, the indexation

rule obeys the following sequencing:

1. First, as long as Ft does not fall below F lb, the pension fund provides restoration

of previous (unrestored) reductions in hard rights and missed indexation on hard

rights. Missed indexation occurs when less than full indexation is given to the

target (price or nominal wage inflation) pursued by the fund.

2. Next, if after applying the aforementioned restorations the funding ratio still

exceeds F lb, and as long as Ft does not fall below F lb, the pension fund provides

the new indexation (to a maximum of full indexation) of hard entitlements. For

this purpose it potentially marks down the value of the soft entitlements.

3. If the funding ratio still exceeds F lb, the pension fund indexes the soft entitlements

until either the funding ratio is F lb or soft entitlements have been fully indexed,

including the mark-up νω of 0.5%. However, neither soft entitlements that were

marked down earlier, nor missed indexation on these soft rights are restored.

Soft entitlements function as a ’memory-less’ buffer against shocks, absorbing

both the good and the bad shocks while no track is kept of what happened in

earlier years.

4. If after the full indexation including the mark-up of soft entitlements the funding

ratio exceeds F ub, the pension fund provides additional indexation to the soft

rights, until the funding ratio is exactly F ub again. This is done to prevent the

pension fund buffer from exploding and to award the holders of soft rights some

of the upward potential of the pension fund investments as a compensation for

the downward risk they are exposed to.
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5.3.4 The Fraction contract

Under the second type of new contract, the ”Fraction contract”, the transition from old

to new entitlements is handled in the same way as in the Rolling Window contract: a

fraction ξ of the old entitlements is transformed into hard entitlements, while a fraction

1− ξ is transformed into soft entitlements:

Mh
i,j,0 = ξM o

i,j,0, (5.30)

M s
i,j,0 = (1− ξ)M o

i,j,0. (5.31)

However, the accrual of hard and soft entitlements as a result of working takes place in

the same proportion as the transformation of the old entitlements: each year a fraction

ξ of the new entitlements is accumulated as hard entitlements, while the remaining

fraction 1 − ξ is accumulated as soft entitlements. Hence, for working generations

(j < R) we have:

Mh
i,j,t+1 =

(
1 + ωht

) (
Mh

i,j,t + µmax [0, ξ (wi,t − frt)]
)
, (5.32)

M s
i,j,t+1 = (1 + ωst )

(
M s

i,j,t + µmax [0, (1− ξ) (wi,t − frt)]
)
, (5.33)

while for retired generations (j ≥ R) we have:

Mh
i,j,t+1 =

(
1 + ωht

)
Mh

i,j,t, (5.34)

M s
i,j,t+1 = (1 + ωst )M

s
i,j,t. (5.35)

The total entitlements of each individual are again the sum of the stocks of the soft

and hard entitlements as in equation (5.23), while as before the values of the liabilities

and the funding ratio are calculated according to (5.7)-(5.10). Notice that, in contrast

to the Rolling Window proposal, retirees continue to hold soft entitlements and so they

continue to share in the risks affecting the pension fund.

Underfunding
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The rule for dealing with underfunding is exactly the same as under the Rolling Win-

dow contract.

Indexation

The rule for indexation is exactly the same as under the Rolling Window contract.

5.3.5 The Split contract

The Split contract focuses on a separation between hard and soft entitlements in the

transition from the old to the new system. The stock of old entitlements becomes the

stock of new hard entitlements in a one-to-one conversion:

Mh
i,j,0 = M o

i,j,0, (5.36)

M s
i,j,0 = 0. (5.37)

Hence, at the moment of the transition to the new system, there will be only hard

entitlements. Subsequently, all newly accrued entitlements are soft entitlements. As

soon as the funding ratio exceeds F ub, some of the soft entitlements are transformed

into hard entitlements. For working generations (j < R) entitlements evolve as:

Mh
i,j,t+1 =

(
1 + ωht

)
Mh

i,j,t + Tt, (5.38)

M s
i,j,t+1 = (1 + ωst )

(
M s

i,j,t + µmax [0, (wi,t − frt)]
)
− Tt, (5.39)

where Tt is the potential transformation of soft entitlements into hard entitlements in

period t, as will be described below.

For retired generations (j ≥ R) we obtain:

Mh
i,j,t+1 =

(
1 + ωht

)
Mh

i,j,t + Tt, (5.40)

M s
i,j,t+1 = (1 + ωst )M

s
i,j,t − Tt. (5.41)
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Underfunding

The policy in the case of underfunding is identical to that under the Rolling Win-

dow and Fraction arrangements.

Indexation

As long at the funding ratio is below F ub, indexation policy is identical to that under

the Rolling Window and Fraction proposals. However, when the funding ratio exceeds

F ub, step 4 of the indexation rule becomes as follows. First, soft entitlements are uni-

formly increased until the funding ratio has fallen to F ub. After that some of the soft

entitlements may be transformed into hard entitlements. If soft entitlements as a share

of the total (hard plus soft) entitlements are smaller than φ, nothing happens. If soft

entitlements as a share of the total exceed φ, soft entitlements are transformed into

hard entitlements on a one-for-one basis, until the soft entitlements as a share of the

total entitlements are exactly equal to φ. The transformation of entitlements is thus

given by:

Tt = max

{
0,

[
(1 + ωst )M

s
i,j,t

M̃i,j,t

− φ

]
M̃i,j,t

}
. (5.42)

where M̃i,j,t =
(
1 + ωht

)
Mh

i,j,t + (1 + ωst )M
s
i,j,t. Notice that indexation is awarded first,

before the transformation takes place.

5.3.6 Contribution policy

The contribution rate is fixed and constant at its cost-covering level. Hence, the contri-

bution rate is not used as a policy instrument by the pension fund. The cost-covering

contribution rate θ to the pension fund is defined as the contribution rate such that in

expectation the discounted sum of all contributions equals the discounted sum of all

benefits payed by the pension fund:

E1

R−1∑
t=1

θ (w̄t − frt)(
1 + rfl

)t−1 = E1

J∑
t=R

b̄t(
1 + rfl

)t−1 (5.43)
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where w̄t and b̄t are the population averages of wages and benefits of the pension fund

participants.

5.4 Calibration and simulation

5.4.1 Calibration

Individuals enter the labour market at age 25 and work for 42 years, so that they retire

at age 67. We normalise the entry age to 1, hence R = 43 in the model. The maximum

age that an individual can reach and live is 99 years (as soon as the individual turns

100, he dies for sure), which corresponds to a maximum of 75 years of life of the model

(J = 75). Survival probabilities from year to year are taken from the latest projections

by the Dutch Actuarial Society (AG, 2010). Data for the distribution of wages over age

groups and gender specific income classes are provided by MN for the PMT pension

fund for the year 2010. These figures pin down the initial situation for our simulations.

We set the pension fund parameters so as to mimick the situation for PMT. The

pension fund starts with a funding ratio of exactly 100%. The contribution rate is

θ = 18.6%, which equals the cost-covering contribution rate in 2010 plus a solvency

mark-up. The accrual rate of pension entitlements is µ = 2.236%, which is very close

to the legally allowed maximum of 2.25%. We set α = 0.5, hence the pension fund

invests half of its portfolio in equity and the other half in bonds. The lower and upper

bounds of the indexation schedules are set at F lb = 100% and F ub = 140%. The

choice for the lower bound is obvious, as a funding ratio below 100% means that the

pension fund is technically insolvent. The choice for the upper bound is loosely based

on observed indexation policies in the past and the idea that we do not want the buffers

to become unrealistically large. For instance, participants might pressure the fund into

spending some of the buffer in the form of lower contributions or higher benefits or the

government might start taxing away very high pension buffers. Finally, we need to pin

down some parameters for whose values we do not have any a priori guidelines. We

set the mark-up for the indexation of soft entitlements at νω = 0.5%, the length of the

rolling window of soft entitlements Q in the Rolling Window proposal to 10 years, the

fraction of hard entitlements in the Fraction proposal at ξ = 0.5 and the fraction of
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Table 5.1: Base case parameter values

Parameter Value
R 43
J 75
α 0.5
θ 0.186
µ 0.02236
F0 1
F lb 1
F ub 1.4
νω 0.005
Q 10
φ 0.2
ξ 0.5
π 0.02
g 0.03
rb 0.03
req 0.068

soft entitlements after transformation of entitlements in the Split contract at φ = 0.2.

Further, we set the average value of inflation at 2%, average nominal wage growth at

3%, the average one-year bond return at 3% and the average equity return at 6.8%. By

taking these values we take the parameter values prescribed by the Parameters (2009)

for Dutch pension funds. The values for the covariance matrix Σf of the innovations

and the VAR coefficient matrix B are taken from Beetsma and Bucciol (2011). Their

estimates are based on times series over the period 1976-2005 for the Dutch consumer

price index, Dutch hourly wages - both taken from OECD (2009) - U.S. one-year

bond yields, taken from Reserve (2009) and the MSCI U.S. equity index, taken from

Datastream (2009). The mark-ups for bond maturities longer than one year are based

on the average mark-ups in the Dutch term structure over the period 2001-2010 as

published by Bank (2011).

5.4.2 The simulation setup

We start the simulation by generating an initial distribution of individuals and enti-

tlements based on the PMT data. This initial situation is identical in all versions of
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Table 5.2: Outcomes under wage indexation

Current RW Fraction Split
median funding ratio 1.237 1.148 1.195 1.202
standard deviation funding ratio 0.162 0.162 0.161 0.162
median indexation rate hard entitlements 0.019 0.031 0.032 0.032
stand. dev. indexation rate hard entitlements 0.120 0.051 0.017 0.044
median indexation rate soft entitlements 0.034 0.038 0.038
stand. dev. indexation rate soft entitlements 0.834 0.454 0.790
% of time reduction of hard entitlements 0.216 0.067 0.003 0.031
% of time reduction of soft entitlements 0.292 0.198 0.223
median share soft entitlements 0.258 0.575 0.221
stand. dev. of share of soft entitlements 0.194 0.181 0.110
median replacement rate 0.998 1.037 1.015 0.838
stand. dev. of replacement rate 0.376 0.602 0.370 0.274
median share soft entitlements retirees 0.103 0.349 0.157
stand. dev. share soft entitlements retirees 0.040 0.158 0.092

the model, as it reflects the situation as it currently is, which does not depend on the

form the new contract takes. Next, we draw 1000 sets of 50 (or 250 to check if the

pension scheme is viable in the very long run) realisations for the economic shocks.

We then use these realisations to compute a scenario for each set of shock realisations.

Thus we obtain 1000 scenario’s for all variables in the model. We use these scenarios

to compute the relevant statistics for each version of the model, such as medians and

standard deviations of the funding ratio, the share of soft entitlements, indexation of

hard and soft entitlements and replacement rates of the retiring cohorts.

5.5 Results

For each scenario we present a table with numerical results and a graph. We start with

the baseline parameter combination as reported in Table 5.1, first considering the case

of indexation to nominal wage growth, followed by the case in which the pension fund

indexes entitlements to price inflation.
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5.5.1 Indexation to wages

Table 5.2 and Figures 5.1, 5.2 and 5.3 show the consequences for the financial position

of a pension fund that targets wage indexation under both the current contract and

the three different versions of the new pension contract. Notice that in the current

contract there is only one kind of entitlement (hard), so there are no table entries for

soft entitlements under the current contract.

The median values of the funding ratios differ across the contracts. The current

contract features the highest median funding ratio of 123.7%, while in the rolling

window contract the funding ratio is lowest at 114.8%. This corresponds to the fact that

in the current contract the median indexation of hard and, hence, total entitlements

is 1.9%. This is substantially below the median indexation of hard entitlements in the

proposals for the new contract, which are 3.1% under the Rolling Window contract and

3.2% under the Fraction and Split contracts. It is also substantially below the median

indexation of soft entitlements of 3.4% under the Rolling Window proposal and 3.8%

under the Fraction and Split proposals. Hence, the overall median indexation rate

under the new proposals is substantially higher than the median indexation rate under

the current contract.

We see that the standard deviation of the funding ratio is virtually identical across

contracts. The reason is that it is almost entirely driven by the financial shocks, which

are the same for each contract.

The standard deviation of the indexation of hard entitlements is highest under

the current contract. This is exactly as expected, since there is no buffer of soft

entitlements under the current contract. Of the proposals for the new contract, the

standard deviation under the Fraction proposal is notably below the standard deviation

under the other two proposals, indicating that hard entitlements are more stable under

this scenario. The percentage of time that the hard rights have to be reduced differs

materially across the scenarios: the Fraction scenario does best in this regard. Only

in 0.3% of the observed outcomes are hard entitlements reduced. The Split proposal is

intermediate at roughly 3%, while under the Rolling Window proposal in more than 6%

of the cases hard entitlements are reduced. The main reason for these differences is the

size of the buffer of soft entitlements. Under the Fraction proposal the median share of
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soft entitlements as a share of total entitlements is 57.5% , under the Rolling Window

scenario it is only 25.8%, while under the Split scenario it is even lower at 22.1%. The

substantially larger buffer of soft rights under the Fraction proposal implies that hard

entitlements are safer than under the other two proposals.4

Finally, the median replacement rates under the Rolling Window and Fraction

scenarios are quite close (1.037 versus 0.995). However, under the Rolling Window

proposal the replacement rate is much more volatile. The reason is that under the

Rolling Window proposal the share of the soft entitlements held by the retired is

much lower than under the Fraction proposal; the median shares of soft entitlements

are 10.3% and 34.9%, respectively. Hence, under the Rolling Window proposal the

elderly share less in the risks affecting the pension fund and, hence, the accumulation

of entitlements by the workers is more uncertain.

At 0.838, the median replacement rate under the Split proposal is substantially

lower than under the other two proposals. This is caused by the fact that the share

of hard entitlements is relatively large, while the young possess all or most of the soft

entitlements, especially in earlier periods. The small share of soft entitlements serves

as the buffer for the hard entitlements and the chance that a large share of the soft

entitlements is wiped out through the shocks that hit the pension fund is relatively

high. Because the soft entitlements process is memoryless, these losses will not be

restored. The burden of these losses thus falls primarily on the young who will on

average be confronted with a lower funding ratio at retirement than under the other

two alternatives.

If we look at Figures 5.1, 5.2 and 5.3, we see the same picture emerging in a slightly

more detailed way. The figures depict the funding ratio, indexation of hard entitle-

ments, the share of soft entitlements in total entitlements, and the replacement rate of

the retiring cohort for each of the three proposals for the new contract, respectively.

In Figure 5.1 we see that in the Rolling Window version of the contract, the median

funding ratio goes up in the first few years of the simulation period and then steadily

4Note that the share of soft entitlements is higher than ξ = 0.50, because of the higher indexation
awarded to the soft entitlements when the funding ratio is between 100 and 140%, and the additional
indexation on top of that when the funding ratio is higher than 140%.
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declines. We see that indexation of hard entitlements is pretty stable for the first 20

years of the simulation period, but after 20 years the 5% and 95% intervals strongly

diverge: the standard deviation of the indexation of hard entitlements goes up sharply.

In the lower left panel we see why this happens: in the first 20 years the pension fund

’burns’ its buffer of soft entitlements, so that after 20 years the stock of soft entitlements

is not large enough anymore to absorb most financial shocks.

In Figure 5.2 we see that for the Fraction contract, both the volatility and the levels

of all four variables depicted are relatively stable. In Figure 5.3 we see that for the

Split proposal, indexation of hard entitlements in the first 5 years is highly uncertain

(because the stock of soft entitlements is then very small). After the first 5 years, the

situation is more or less stable. In the lower right panel, which depicts the replacement

rate of the retiring cohort, we see that after about 30 years, the median replacement

rates of the retiring cohorts start declining. As described above, this is caused by the

fact that these are the generations that posessed few or no hard entitlements at the

moment of transition and thus absorbed most of the financial shocks the pension fund

faced.

5.5.2 Indexation to prices

We now repeat the simulations of the previous subsection for indexation to price in-

flation. The results are presented in Table 5.3. We see that in all three scenarios the

median funding ratio is higher while its volatility is unchanged, a direct consequence of

the fact that price inflation tends to be lower than nominal wage growth. That means

that the pension fund provides on average less indexation to its participants, as can be

seen when we compare median rates of indexation of the hard and soft entitlements

for the two cases. The counterpart of lower indexation is a higher buffer. Since buffers

are slightly higher under price indexation, the percentages of times that hard and soft

rights have to be reduced are lower than under wage indexation. Since hard entitle-

ments are on average indexed by less under price indexation, soft entitlements can be

indexed more often and, hence, the median share of soft entitlements is higher in this

case.

The median replacement rates of the retiring cohorts are virtually identical under
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Table 5.3: Outcomes under price indexation

Current RW Fraction Split
median funding ratio 1.252 1.189 1.229 1.236
standard deviation funding ratio 0.161 0.162 0.159 0.160
median indexation rate hard entitlements 0.014 0.022 0.021 0.022
stand. dev. indexation rate hard entitl. 0.120 0.044 0.014 0.038
median indexation rate soft entitlements 0.027 0.029 0.031
stand. dev. indexation rate soft entitlements 0.783 0.300 0.706
% of time reduction of hard entitlements 0.204 0.055 0.001 0.025
% of time reduction of soft entitlements 0.241 0.176 0.184
median share soft rights 0.285 0.626 0.228
standard deviation share soft entitlements 0.191 0.159 0.106
median replacement rate 1.000 1.058 0.996 0.836
standard deviation replacement rate 0.367 0.588 0.351 0.279
median share soft retired 0.108 0.364 0.169
standard deviation share soft retired 0.042 0.157 0.092

wage growth and price inflation indexation for the Fraction and Split proposals, while

it is slightly higher under price indexation than under wage indexation for the Rolling

Window proposal. This might seem counterintuitive, because higher indexation should

imply a higher replacement rate. However, we obtain this result, because under wage

indexation the retiring generations are relatively well off in the first years, leading to a

lower pension buffer and, hence, increasing the chances of low or negative indexation for

later generations. On balance, over the 50-years horizon we consider here, the median

replacement rate of the retiring cohort is lower under wage indexation.

5.5.3 Robustness checks

To save space, we report the robustness checks only for wage indexation. The robust-

ness checks for price indexation are qualitatively very similar.

Varying the volatility on asset returns

In this subsection we vary the standard deviations of the returns on bonds and equity.

In the ”low volatility” scenario, the standard deviation of the return on bonds is 0.85%

and that of the return on equity is 10%. In the ”high volatility” scenario, the standard
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Table 5.4: Varying the volatility of the asset returns

σeq = 0.1 σb = 0.0085 σeq = 0.175 σb = 0.02
RW Fraction Split RW Fraction Split

median funding ratio 1.177 1.196 1.266 1.121 1.192 1.186
st. dev. funding ratio 0.151 0.149 0.146 0.167 0.165 0.167
median ind. rate hard 0.031 0.031 0.031 0.031 0.032 0.032
st. dev. ind. rate hard 0.022 0.014 0.020 0.073 0.020 0.062
median ind. rate soft 0.035 0.036 0.041 0.031 0.038 0.037
st. dev. ind. rate soft 0.325 0.159 0.357 1.879 0.711 1.411
% time reduction hard 0.020 0.001 0.008 0.101 0.005 0.054
% time reduction soft 0.189 0.143 0.101 0.347 0.227 0.266
median share soft ent. 0.282 0.516 0.242 0.244 0.625 0.200
st. dev. share soft ent. 0.143 0.135 0.122 0.217 0.195 0.105
median replacement r. 0.899 0.914 0.755 1.165 1.090 0.906
st.dev. replacement r. 0.296 0.244 0.164 0.943 0.491 0.396
median share soft retired 0.108 0.322 0.187 0.102 0.357 0.141
st. dev. share soft retired 0.033 0.138 0.094 0.044 0.167 0.096

deviations become 2% for the bond returns and 17.5% for the equity returns.

Not surprisingly, increasing the volatility of the assets returns raises the standard

deviations of all variables and the percentage of the time that soft and hard entitlements

are reduced increases. Further, under both the Rolling Window and the Split contracts,

raising the volatility of asset returns leads to a fall in the median funding ratio and

a rise in the median replacement rate. When volatility is low, the funding ratio is

almost always between 100% and 140%. Hence, the pension fund almost never provides

additional indexation on soft rights, so that the median replacement rate of the retiring

cohort is lower, but at the same time this ensures that the buffer is on average a bit

higher.

The asset portfolio

We now consider more defensive mixes of the fund’s asset portfolio. In particular, we

consider the cases of 10% and 25% equity shares.

With more defensive asset mixes, the impact of the equity returns diminishes and

the impact of the bond returns increases. Because the fund invests its bond portfolio so

as to match its liability structure, a larger share of total assets invested in bonds implies
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Table 5.5: Varying the equity share in the fund’s poprtfolio

α = 0.1 α = 0.25
RW Fraction Split RW Fraction Split

median funding ratio 1.215 1.239 1.340 1.212 1.237 1.306
st. dev. funding ratio 0.150 0.151 0.136 0.151 0.150 0.144
median ind. rate hard 0.031 0.032 0.032 0.031 0.031 0.032
st. dev. ind. rate hard 0.014 0.014 0.014 0.017 0.014 0.017
median ind. rate soft 0.037 0.039 0.046 0.037 0.039 0.044
st. dev. ind. rate soft 0.139 0.081 0.260 0.291 0.127 0.425
% reduction hard ent. 0.000 0.000 0.001 0.010 0.000 0.006
% reduction soft ent. 0.128 0.107 0.043 0.155 0.119 0.077
median share soft ent. 0.269 0.534 0.240 0.263 0.568 0.242
st. dev. share soft ent. 0.111 0.120 0.166 0.138 0.129 0.122
median replacement r. 0.952 0.951 0.770 1.015 1.001 0.799
st. dev. replacement r. 0.323 0.242 0.174 0.362 0.264 0.196
median share soft retired 0.113 0.346 0.227 0.111 0.361 0.220
st. dev. share soft retired 0.028 0.142 0.114 0.031 0.147 0.105

that the fund is able to better match its assets to the liabilities. This decreases the

risk of underfunding. However, it also decreases the potential for indexation, because

the average portfolio return is lower.

The standard deviations of most variables under consideration become lower as

the equity share is reduced. Hard entitlements can be guaranteed more effectively.

The fraction of time hard entitlements are reduced decreases substantially under all

three schemes, to essentially never if equity is only 10% of total assets. However, soft

entitlements are still reduced regularly under the three schemes, implying that the

benefits are still uncertain.

The disadvantage of reducing the equity share is that the median replacement rates

fall. Under the Rolling Window proposal, a reduction from 50% to 25% equity share

reduces the median replacement rate of the retiring cohort from 1.04 to 1.02, while

with a 10% equity share the median replacement rate falls to 0.95. Under the Fraction

scenario, the median replacement rate goes down in a comparable way. For the Split

contract the median replacment rate was lower to start with. However, the reduction

is similar as the equity share goes down.

Summarising, we find that reducing the equity share in the fund’s portfolio is a
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Table 5.6: Wage indexation, different retirement ages

R = 38 R = 41
RW Fraction Split RW Fraction Split

median funding ratio 1.133 1.168 1.203 1.142 1.185 1.223
st. dev. funding ratio 0.160 0.160 0.161 0.162 0.160 0.161
median ind. rate hard 0.031 0.031 0.032 0.031 0.031 0.031
st. dev. ind. rate hard 0.042 0.025 0.046 0.049 0.021 0.045
median ind. rate soft 0.032 0.035 0.038 0.033 0.036 0.039
st. dev. ind. rate soft 0.528 0.459 0.720 0.667 0.436 0.875
% reduction hard ent. 0.049 0.012 0.035 0.064 0.008 0.032
% reduction soft emt. 0.297 0.240 0.216 0.296 0.217 0.201
median share soft ent. 0.299 0.489 0.212 0.270 0.537 0.201
st. dev. share soft ent. 0.179 0.192 0.109 0.188 0.185 0.099
median replacement r. 0.743 0.768 0.623 0.931 0.927 0.753
st. dev. replacement r. 0.326 0.258 0.163 0.479 0.324 0.235
median share soft retired 0.225 0.406 0.257 0.147 0.374 0.184
st. dev. share soft retired 0.052 0.152 0.097 0.046 0.157 0.098

good way of guaranteeing hard entitlements. However, it comes at the cost of lower or

zero median indexation and thus lower median replacement rates for retiring cohorts.

Varying the retirement age

This subsection varies the retirement age. It considers retirement ages of 62 years,

which corresponds to a retirement age in the model of R = 38, and 65 years, which

corresponds to R = 41.

If workers retire earlier, they pay contributions for a fewer number of years and,

hence they accumulate fewer entitlements. Hence, median replacement rates are lower

under all contract types. The effects on other variables are not very pronounced,

because the lower lifetime contributions and the lower benefits during retirement have

offsetting effects on the funding ratio.

Policy parameters

This subsection varies a number of policy parameters. Under the Rolling Window

contract, we vary the rolling window phase of soft entitlements to Q = 5 and Q =

15 years. Under the Fraction contract, we vary the fraction of hard entitlements to
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Table 5.7: Varying the policy parameters

RW Fraction Split
Q = 5 Q = 15 ξ = 0.75 ξ = 0.25 φ = 0.1 φ = 0.3

median funding ratio 1.097 1.174 1.181 1.196 1.227 1.228
st. dev. funding ratio 0.162 0.161 0.162 0.161 0.163 0.160
median ind. rate hard 0.030 0.031 0.031 0.032 0.031 0.032
st. dev. ind. rate hard 0.079 0.033 0.047 0.014 0.055 0.038
median ind. rate soft 0.028 0.036 0.036 0.038 0.039 0.040
st. dev. ind. rate soft 1.739 0.546 2.193 0.171 1.320 0.897
% reduction hard ent. 0.141 0.029 0.049 0.000 0.058 0.022
% reduction soft ent. 0.379 0.243 0.243 0.190 0.215 0.186
median share soft ent. 0.082 0.399 0.387 0.788 0.100 0.302
st. dev. share soft ent. 0.141 0.206 0.222 0.091 0.076 0.113
median replacement r. 1.056 1.024 1.028 0.994 0.786 0.848
st. dev. replacement r. 0.679 0.510 0.412 0.362 0.267 0.284
median share soft retired 0.057 0.153 0.302 0.363 0.093 0.185
st. dev. share soft retired 0.023 0.060 0.194 0.142 0.069 0.117

ξ = 0.25 and ξ = 0.75, while under the Split contract, we vary the threshold for the

transformation of soft into hard contracts to φ = 0.1 and φ = 0.3.

For the Rolling Window model, we see that if the build up phase of soft entitlements

is only 5 years, the buffer of soft entitlements becomes much smaller and is much less

effective at insulating the hard entitlements to shocks: the standard deviation of the

indexation rate to hard entitlements rises to 0.08, while hard entitlements are more

often reduced, namely in 14% of all scenarios.

The median share of soft rights is only slightly more than 8%. The median re-

placement rate of the retiring cohorts is actually slightly higher (1.06 versus 1.04) than

with the 10 year rolling window, because (older) workers have a larger share of hard

entitlements for which the soft entitlements act as a buffer. This is a benefit for the

older workers in the earlier years: the first 35 generations that retire under the 5 year

rolling window are better off, while all generations retiring after that are worse off,

since they absorbed most shocks in their soft entitlements when young. The standard

deviation of the replacement rate rises to 0.68. In case the build up phase is lengthened

to 15 years, the effects are the opposite of a shortening of the rolling window phase.

Under the Fraction proposal, if the share of hard entitlements is raised to ξ = 0.75
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Table 5.8: Outcomes under wage indexation with 250 periods

RW Fraction Split
median FR 1.106 1.193 1.000
s.d. FR 0.161 0.159 0.156
median hard indexation 0.031 0.032 0.030
s.d. hard indexation 0.065 0.019 0.151
median soft indexation 0.029 0.037 -0.104
s.d. soft indexation 1.001 0.434 6.083
% of time reduction of hard rights 0.104 0.005 0.220
% of time reduction of soft rights 0.355 0.193 0.515
median Share soft 0.170 0.592 0.029
s.d. share soft 0.195 0.188 0.119
median replacement rate 1.145 1.186 1.471
s.d. replacement rate 1.112 0.587 3.985
median share soft retired 0.114 0.423 0.146
st. dev. share soft retired 0.041 0.136 0.103

the hard entitlements will be harder to guarantee, because the buffer of soft entitlements

is lower than in the base case. The standard deviation of hard entitlements goes up

from 0.017 to 0.047, while the fraction of time the hard entitlements are reduced goes

up from 0.003 to 0.049. Not surprisingly, when the fraction of hard entitlements is

reduced, the effects go into the opposite direction. Finally, increasing the threshold for

the transformation of soft into hard entitlements to φ = 0.3 under the Split proposal,

the result will be a larger median fraction of soft entitlements and the consequences

are qualitatively the same as those of raising the share of soft entitlements under the

Fraction proposal. Similarly, decreasing the threshold to φ = 0.1 has qualitatively

similar consequences as reducing the share of soft entitlements under the Fraction

proposal.

Simulation length

Running the simulations for 250 periods instead of 50 periods, so that all transition

dynamics in both the build up phase and demographics disappear produces the results

in Table 5.8. We see that for the Rolling Window contract, the median funding ratio

is slightly lower, but not that much. The main difference for the Rolling Window

contract is that in the long run the stock of soft entitlements is not nearly large enough
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to provide a meaningful buffer for the hard entitlements, which essentially become

soft themselves. In over 10% of the scenarios, hard entitlements have to be reduced.

Also, under the Rolling Window contract there are particularly lucky generations and

particularly unlucky generations: the standard deviation of the replacement rate of the

retiring cohort is quite high (1.112).

For the Fraction contract, the differences between the 50 periods and the 250 periods

simulation are very small, indicating that there were hardly any transitional dynamics

in the first place.

For the Split contract, we see large differences between the 50 and 250 periods

simulations. The median funding ratio is 100% in the 250 periods simulation, whereas

it was over 120% in the 50 periods simulation. Median indexation of soft entitlements

is -10.4%, because the buffer of soft entitlements gradually vanishes. The median share

of soft entitlements over the entire time horizon is 2.9%. Closer inspection reveals

initially this is higher (over 22% for the first 50 years), but that after 100 periods the

median share of soft entitlements falls to 0. The median replacement rate is quite high,

but also the standard deviation is high, implying some generations are well off, while

others suffer. A generation’s luck in this regard depends to a large extent on the size

of the buffer of soft entitlements at the moment of entering the pension fund.

5.6 Conclusion

In this chapter we have simulated the consequences for benefits and pension funding

ratios of several proposals to replace the current Dutch occupational contract. The

common feature of all proposals was the replacement of the current system of only

hard entitlements by a system with both hard and soft entitlements, where the latter

acted as a buffer for the former. That is, negative shocks were first absorbed by

the soft entitlements and only once the buffer of soft entitlements was depleted hard

entitlements would be affected. Our simulations were carried out both for the case of

indexation of entitlements to price inflation and indexation to wage inflation.

Under the proposals considered here, indexation is higher and more readily provided

than under the current system. This implies that the currently retired generations
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benefit more under the new proposals than under the current contract. Out of the

three new proposals, only the Fraction contract succeeds in effectively guaranteeing

hard entitlements and providing relatively stable indexation and buffers over time. The

results suggest that in a system with both hard and soft entitlements, the only way

to prevent substantial intergenerational transfers is to have all generations accumulate

both types of entitlements. Because financial shocks are absorbed through the soft

entitlements, this way the costs and benefits of those shocks can be spread over all the

generations.

A possible extension of the analysis in this chapter would be to include additional

sources of shocks. Obvious candidates are unexpected changes in survival probabilities

and fertility. Another extension would to vary the parameters of the pension contract.

For example, it would be interesting to vary the recovery period. Under the current

proposals, a fall of funding ratio below 100% is immediately offset through a cut in

entitlements. The resulting volatility in the entitlements could be dampened by con-

sidering longer recovery periods. We would expect disposable income to become more

stable, which would benefit the fund’s retirees to the extent that they have difficulties

in smoothing consumption.
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APPENDICES

5.A Derivation of (5.14)

We assume zero-coupon bonds for simplicity. (Using coupon bonds would be concep-

tually equivalent, but would complicate the notation needlessly). The return on a

zero-coupon bond in year t with k years to maturity at the end of the year equals the

capital gain in year t:

1 +Retbk,t =
Pk,t

Pk+1,t−1

(5.44)

where Pk,t is the price of the bond at the end of the year and Pk+1,t−1 is the price at

the beginning of the year, when the time to maturity is k+ 1. For a zero coupon bond,

we can write these prices as:

Pk,t =
FV

(1 + rk,t)
k
, (5.45)

Pk+1,t−1 =
FV

(1 + rk+1,t−1)k+1
, (5.46)

where FV is the face or principal value of the bond. Plugging these expressions into

(5.44) yields (5.14):

1 +Retbk,t =
FV/(1 + rk,t)

k

FV/(1 + rk+1,t−1)k+1
=

(1 + rk+1,t−1)k+1

(1 + rk,t)k
. (5.47)

5.B Indexation Policy Rolling Window proposal

In this appendix we provide the exact formulas for the indexation policy under the

Rolling Window proposal as laid out in Section 5.3.3. Throughout this appendix we

assume price-indexation, so that full indexation of hard entitlements is defined as ωht =

πt and full indexation of soft entitlements is defined as ωst = πt + νω. For a pension

fund instead following a policy of wage indexation, we would simply need to replace πt

by gt in all instances.
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5.B.1 Reduction of hard entitlements

We keep track of the stock of reductions and missed indexation of hard entitlements

as follows:

Mm
i,j,t =

(
1 + ωht

) (
Mm

i,j,t−1 − m̃h
i,j,t

)
+mm

i,j,t, (5.48)

where m̃h
i,j,t is the amount of previously missed entitlements that is now awarded to the

participants of the pension fund through a catch-up indexation and mm
i,j,t, the addition

to the stock of missed entitlements, is given by:

mm
i,j,t =

(
πt − ωht

)
Mh

i,j,t if ωht < πt,

and zero otherwise. The amount m̃h
i,j,t is determined as:

m̃h
i,j,t = min[1,max(0,

Ft
F ub
− 1)] ∗Mm

i,j,t−1. (5.49)

This expression says that the amount of previously missed entitlements that are re-

stored through catch-up indexation m̃h
i,j,t is a fraction of previously missed entitlements.

This fraction depends on the actual funding ratio Ft relative to the funding ratio at

which full indexation is awarded, F ub. It is capped at 1 because it is at most equal

to the total stock of missed entitlements. Its minimum value is 0 because catch-up

indexation is not allowed to be negative.

5.B.2 Indexation of hard entitlements

If, after catch-up indexation, At > Lht , the pension fund provides indexation of hard

entitlements until either At = Lht or ωht = πt:

ωht = min[πt,max(0,
At − Lht
Lht

)]. (5.50)

Note that the fact that the pension fund only considers its asset position and the

amount of hard liabilities means that it can potentially reduce soft entitlements to

provide indexation of hard entitlements.
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5.B.3 Indexation of soft entitlements

If, after indexation of hard entitlements, At > Lt, the pension fund provides indexation

of soft entitlements until either At = Lt or ωst = πt + νω:

ωst = min[πt + νω,max(0,
At − Lt
Lst

)]. (5.51)

In the case that after awarding indexation to the soft entitlements the funding ratio

is above its upper bound, Ft > F ub, then the pension fund awards extra indexation to

the soft entitlements until Ft = F ub. In that case the expression for the total indexation

of the soft entitlements becomes:

ωst =
Lub − Lt

Lst
(5.52)

where Lt and Lst denote the values of total entitlements and total soft entitlements,

respectively, after indexation to hard entitlements has been awarded, but before any

indexation to soft entitlements has been awarded. Further, Lub is the value of liabilities

such that Ft = F ub. Hence, Lub = At/F
ub.
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5.B.4 Figures for base scenario

Figure 5.1: Rolling Window wage indexation
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Figure 5.2: Fraction wage indexation
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Figure 5.3: Split wage indexation
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5.B.5 Figures for replacement rates base scenario

Figure 5.4: Replacement Rates Rolling Window version
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Figure 5.5: Replacement Rates Fraction version
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Figure 5.6: Replacement Rates Split version
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Samenvatting

In dit proefschrift analyseer ik het ontwerp van pensioen systemen, waarbij de aandacht

met name uitgaat naar het intergenerationele risicodelings-aspect van pensioenen. In

hoofdstukken 2 en 3 wordt de optimale inrichting van pensioensystemen die op twee pi-

jlers (omslagfinanciering en kapitaaldekking) gebaseerd zijn behandeld, waarbij reken-

ing wordt gehouden met meerderen schokken en verstoringen, waarbij deelname in het

pensioensysteem verplicht is. In hoofdstuk 4 wordt de beslissing om al dan niet deel

te nemen in een collectieve regeling onderzocht, en de impact daarvan op het ontwerp

van collectieve pensioenregelingen indien deelname niet verplicht is. Hoofdstuk 5 geeft

een gedetailleerde analyse van enkele opties die de revue gepasseerd zijn bij de recente

discussie rondom de vernieuwing van aanvullende pensioencontracten in Nederland.

Hoofdstuk 2 gaat in op optimaal ontwerp van het pensioensysteem, waarbij rekening

gehouden wordt met de verstorende effecten hiervan op de arbeidsaanbodsbeslissingen

van individuen. De centrale vraag hierbij is: ‘Hoe dient een pensioensysteem met twee

pijlers - een omslaggefinancierde eerste pijler en een kapitaalgedekte tweede pijler -

eruit te zien als er rekening wordt gehouden met endogene arbeidsaanbod beslissin-

gen’? In dit hoofdstuk zijn er twee bronnen van risico, productiviteitsrisico en risico

op financiële markten.

In principe zou de ontwerper van het pensioensysteem dit zodanig in willen richten

dat alle soorten risico’s optimaal door de verschillende generaties gedeeld worden. Het

pensioensysteem kan echter verstorend werken op de arbeidsmarkt. Het precieze mech-

anisme is als volgt: als de premiebetalingen een percentage van het loon bedragen, gaat

het nettoloon van het individu omlaag. Hierdoor kan de arbeidsaanbodbeslissing veran-

deren. Indien alle werknemers deze zelfde prikkel hebben vanuit het pensioensysteem,
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kan het totale arbeidsaanbod op een suboptimaal niveau uitkomen. Dit kan lonen,

rendement op fysiek kapitaal en de totale nationale productie verstoren en het wel-

vaartsniveau verlagen. In dit hoofdstuk laat ik zien dat als een dergelijke verstoring

bestaat, dat het optimale ontwerp van het pensioensysteem dan verandert zodanig dat

de sociaal optimale allocatie van productiefactoren toch bereikt kan worden. De oploss-

ing die in dit hoofdstuk gevonden wordt is het koppelen van de premies in de tweede

pijler aan de geaggregeerde loonsom in plaats van aan individuele lonen. Hierdoor

verandert de premie voor de werkende generaties de facto in een lump-sum premie,

waardoor de verstoring van de arbeidsmarkt niet plaatsvindt, terwijl de risico’s die ac-

tieven via hun loon lopen nog steeds gedeeld kunnen worden met de gepensioneerden.

Hoofdstuk 3 gaat eveneens over het optimale ontwerp van pensioen systemen, maar

vanuit een geheel andere invalshoek. In plaats van naar gedragsverstoringen wordt

in dat hoofdstuk naar onzekerheid rondom demografische ontwikkelingen gekeken. In

aanvulling op de twee schokken die in hoofdstuk 2 een rol speelden wordt in dit hoof-

stuk onzekerheid rondom de geboorte- en sterftecijfers meegenomen. Hierdoor zijn er

vier bronnen van onzekerheid in hoofdstuk 3. Demografische onzekerheid bëınvloedt

vrijwel alle macroeconomische relaties; arbeidsaanbod, lonen, rendement op kapitaal,

nationaal inkomen, private en pensioenbesparingen, erfenissen en de relatieve grootte

van de overdrachten via de eerste pijler zijn er allemaal van afhankelijk. Hoewel het

model zeer gestileerd is zorgt de aanwezigheid van demografische risico’s ervoor dat op-

timale risicodeling met constante pensioensysteem-parameters onmogelijk is. Om die

reden wordt een gedetailleerde numerieke analyse gedaan om vast te stellen welke mate

van risicodeling bereikt kan worden in de aanwezigheid van demografische risico’s en

constante systeemparameters. Bovendien is onderzocht hoe ver deze oplossing verwi-

jderd ligt van de sociaal optimale oplossing die een ’sociale planner’ zou kiezen. Hoewel

met het pensioensysteem de oplossing van de sociale planner niet gerepliceerd kan wor-

den, blijkt uit hoofdstuk 3 dat in een systeem met een tweede pijler gebaseerd op een

uitkeringsovereenkomst het welvaartsverlies ten opzichte van deze optimale oplossing

slechts zeer klein is. Of dit resultaat ook in een realistischer set-up geldt is een vraag

voor verder onderzoek.
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Hoofdstuk 4 gaat in op een zeer belangrijk aspect van collectieve kapitaalgedekte pen-

sioenregelingen: verplichte deelname. In hoofdstukken 2 en 3 werd aangenomen dat

alle individuen verplicht deel moeten nemen aan de pensioenregelingen. In hoofdstuk

4 wordt de vraag onderzocht of, en zo ja onder welke omstandigheden, vrijwillige deel-

name in collectieve kapitaalgedekte pensioenregelingen mogelijk is. Het is een bekend

resultaat dat vanuit een ex-ante perspectief collectieve pensioenregelingen grote wel-

vaartswinsten voor de deelnemers bieden door de risicodeling die binnen die regelingen

plaatsvindt.

Nieuwe toetreders tot een regeling kunnen echter geconfronteerd worden met een ongun-

stige financiële positie van de regeling waar zij tot toetreden vanwege ongunstige

schokken in het verleden. In dat geval kan van hen een aanvullende bijdrage gevraagd

worden om bij te dragen aan het herstel van de financiële positie, zonder dat hier direct

aanspraken tegenover staan. Hierdoor rijst de vraag of voor deze nieuwe toetreders het

niet gunstiger zou zijn om, indien zij de keuze hadden, niet toe te treden tot de col-

lectieve regeling, maar voor zichzelf pensioen op te bouwen. De vervolgvraag is dan

of het toch mogelijk is om een collectieve regeling zodanig te ontwerpen dat potentiële

nieuwe toetreders nooit de prikkel hebben om uit het systeem te stappen, terwijl er

toch enige risicodeling in het systeem blijft.

Het model in hoofdstuk 4 is een oneindige-horizon model met twee overlappende gen-

eraties, waarbij de jonge generatie kan kiezen om toe te treden tot een collectieve

kapitaalgedekte pensioenregeling, of om zelf te sparen voor pensioen. Zodra een jonge

generatie besluit niet toe te treden tot het collectieve systeem houdt dit op te bestaan.

De uitdaging voor de ontwerper van de collectieve regeling is om dit zodanig te doen

dat jonge generaties toe willen blijven treden, wat inhoudt dat het verwachte nut van

instappen minimaal gelijk moet zijn aan het verwachte nut van niet toetreden. Of het

mogelijk is om een dergelijke regeling te ontwerpen hangt af van zowel de volatiliteit

van de schokken waartegen het pensioensysteem bescherming biedt (in het geval van

hoofdstuk 4 risico op de financiële markten), als de mate van risico-aversie van de jonge

generatie. Hoofdstuk 4 laat zien dat collectieve regelingen ophouden te bestaan indien

volatiliteit en risico-aversie relatief laag zijn, terwijl voor wat hogere volatiliteit en
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risico-aversie het wel mogelijk is om een collectief systeem gaande te houden, maar dat

de mate van risicodeling in deze regelingen minder is dan de sociaal optimale mate van

risicodeling. In deze omstandigheden is het alleen mogelijk om de optimale hoeveelheid

risicodeling te bereiken door deelname aan collectieve pensioenregelingen verplicht te

stellen.

Hoofdstuk 5 tenslotte is relevant voor het huidige debat rondom de hervormingen

in de aanvullende pensioencontracten in Nederland. Bij deze hervorming is een aantal

mogelijke nieuwe varianten voor het inrichten van de aanvullende pensioencontracten

overwogen. Een variant, die in dit hoofdstuk uitgebreid onderzocht wordt, is het ‘combi-

contract’. In een combi-contract worden de aanspraken van deelnemers gesplitst in een

‘hard’ en een ‘zacht’ deel, waarbij de zachte aanspraken als een buffer dienen om de op

papier volledig gegarandeerde harde aanspraken te beschermen. In hoofdstuk 5 worden

3 manieren om een dergelijk combi-contract te implementeren met elkaar en met het

huidige contract vergeleken. De analyse biedt inzicht in hoe in ieder van de varianten

schokken verdeeld worden over de verschillende generaties deelnemers.

In de eerste variant zijn nieuw opgebouwde rechten aanvankelijk zacht, maar worden

deze na een bepaald aantal jaar omgezet in harde rechten. In de tweede variant is een

bepaald percentage van de nieuwe opbouw hard, terwijl het andere deel van de nieuwe

opbouw zacht is. In de derde variant zijn nieuw opgebouwde rechten zacht, maar wor-

den deze bij een voldoende hoge dekkingsgraad omgezet in harde rechten. Met behulp

van een Asset-Liability Management (ALM) model van een pensioenfonds simuleren

we de ontwikkeling van het pensioenfonds, toegekende indexatie, en de ontwikkeling

van harde en zachte rechten in een groot aantal scenario’s.

De resultaten laten zien dat voor alle drie de vormen van het combi-contract, indexatie

sneller verleend wordt dan in het huidige contract. Hierdoor zijn de huidige generaties

gepensioeneerden beter af, maar is de kans op lagere pensioenen voor de huidige en

toekomstige generaties werkenden groter. Van de drie verschillende combicontracten is

alleen de tweede variant (waarbij harde en zachte rechten in vaste verhouding worden

opgebouwd) in staat om te garanderen dat harde rechten ook echt hard zijn en vrijwel

nooit afgestempeld hoeven te worden. Bovendien zijn het in beide andere voorstellen
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met name jongere generaties die zachte rechten hebben, en dus het meeste risico lopen.

Hierdoor kunnen grote intergenerationele overdrachten plaatsvinden. De resultaten

suggereren dat effectieve risicodeling tussen alle deelnemers in een regeling vereist dat

ofwel alle aanspraken van dezelfde soort zijn (zoals in het huidige contract) of dat alle

deelnemers beide soorten aanspraken in een vaste verhouding opbouwen, zoals in de

tweede variant van het combi-contract.
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