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Introduction



Motivation

� The fundamental question in finance and insurance is how we should

price contingent claims?

� We are interested in a portfolio of equity-linked life insurance policies.

� What is a value of an insurance liability S? What is a value of a portfolio
of insurance liabilities?

– Depends on financial risks (hedgeable and non-hedgeable): Interest rate,

equity, volatility, rational lapses etc.

– Depends on actuarial risks (non-hedgeable diversifiable and

non-diversifiable): diversifiable and undiversifiable mortality risk, irrational

lapses etc.
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Actuarial and Financial valuation

� Actuarial valuations:

ρ[S] = EP [S] + RMP [S]

– Based on the principle of diversification.

– Risk margin (premium loading) RM to cover non-diversified risk.

– The valuation is performed under the real-world measure P.

� Financial valuation:

ρ[S] = EQ [S]

– Based on the principles of no-arbitrage and replication.

– Risk-neutral measures Q and the implied prices follow from observed market

prices of traded assets.

– In complete markets: Q is unique, the price of S is the market price of the

replicating portfolio.

– In incomplete markets: Infinite choice of Q and we choose the pricing and

the hedging objective, the price of S is the market price of the hedging

portfolio. 3 / 33



Actuarial and Financial valuation

� The goal of the research is to combine actuarial and financial valuations.

� In accordance with Solvency II Directive, insurance liabilities should be

priced in a so-called market-consistent way:

Price = Best Estimate︸ ︷︷ ︸
Hedgeable and diversifiable risks

+ Risk Margin︸ ︷︷ ︸
Non-hedgeable and non-diversifiable risks

� Can we give a formal (theoretical) derivation of this pricing principle in

discrete and continuous time?
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Two-step approach

� One-period two-step hedge-based approach (Dhaene et al. 2017):

ρ [S] = V θ(0)︸ ︷︷ ︸
Hedgeable part

+ π[S − V θ(T )]︸ ︷︷ ︸
Non-hedgeable part

– Based on (non-unique) liability decomposition into hedgeable and

non-hedgeable parts.

– The price of the hedgeable part is determined by financial valuation and

quadratic hedging, the price is related to the market cost of the hedging

portfolio.

– The price of the non-hedgeable part is determined by actuarial valuation,

the price is related to the real-world cost of the residual claims left after the

hedging portfolio is implemented (includes financial and actuarial

non-hedgeable risks) .
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Two-step approach

� The two-step hedge-based valuation of Dhaene et al. (2017) in a

one-period setting was generalized in a discrete multi-period setting in

Barigou et al. (2019) and in continuous-time in Delong et al. (2019a),

Delong et al. (2019b) and Delong & Barigou (2021).

� The authors consider a fair valuation of insurance liabilities.

� We derive a system of partial differential equations for the

continuous-time valuation operator.

� We can solve the system of PDEs with deep neural networks by applying

Deep Backward Dynamic Programming Principle (Deep BDPP).
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Two-step approach

� Two-step conditional approach by (Pelsser & Stadje 2014)
and (Salahnejhad Ghalehjooghi & Pelsser 2021) :

ρ [S] = EQ
[
π [S | Y]︸ ︷︷ ︸
Inner step

]
︸ ︷︷ ︸

Outer step

– Inner step: Actuarial valuation conditional on traded asset prices.

– Outer step: Financial valuation.

� Three-step hedge-based and conditional approach by (Linders 2023).
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Fair valuation of insurance liabilities

and pricing PDEs



Financial market

� We consider a Black-Scholes type financial market:

� Risk-free asset:
dR(t)

R(t)
= rdt, 0 ≤ t ≤ T.

� Two risky assets:

dY (t)

Y (t)
= µY dt+ σY dWY (t), 0 ≤ t ≤ T,

dF (t)

F (t)
= µFdt+ σFdWF (t), 0 ≤ t ≤ T,

where the processes (WY ,WF ) are correlated Brownian motions defined by

WY (t) = W1(t), WF (t) = ρW1(t) +
√
1− ρ2W2(t),

and (W1,W2) are independent Brownian motions.

� We assume that Y is traded in the financial market, and F is not traded.

� More generally, F can be interpreted as a background non-hedgeble and

non-diversifiable noise which impacts the insurance payments.
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Insurance portfolio

� We consider an equity-linked life insurance portfolio with n policies.

� The lifetimes of the policyholders (τk)k=1,...,n are independent and

identically distributed, conditional on

F (Y,F )
T = σ

(
(Y (s), F (s), 0 ≤ s ≤ T

)
:

P
(
τk > t|F (Y,F )

T

)
= e−

∫ t
0 λ(s,Y (s),F (s))ds, 0 ≤ t ≤ T.

� The counting process and the compensated counting process:

N(t) =

n∑
k=1

1{τk ≤ t},

Ñ(t) = N(t)−
∫ t

0
(n−N(s−))λ(s, Y (s), F (s))ds, 0 ≤ t ≤ T.

� The number of policies in force: J(t) = n−N(t).

� The benefit process:

B(t) =

∫ t

0
(n−N(u−))A(u, Y (u), F (u))du+

∫ t

0
D(u, Y (u), F (u))dN(u)

+ (n−N(T ))S(Y (T ), F (T ))1t=T , 0 ≤ t ≤ T.
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Hedging portfolio

� Since a part of the benefit process can be hedged, we introduce a

hedging portfolio.

� Let θ = (θ(t), 0 ≤ t ≤ T ) denote a dynamic hedging strategy – the

amount of money invested in Y ,

� Let V θ = (V θ(t), 0 ≤ t ≤ T ) denote the self-financing hedging portfolio

under the strategy θ given by the dynamics:

dV θ(t) = θ(t)(µY dt+ σY dWY (t)) + (V θ(t)− θ(t))rdt

− (n−N(t−))A(t, Y (t), F (t))dt−D(t, Y (t), F (t))dN(t),

and the terminal payments (n−N(T ))S(Y (T ), F (T )) are subtracted

from V θ(T ) at time T .
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One-period valuation operator

� For the market price of the hedgeable liability, we minimize the

mean-square hedging error at the terminal time under the unique

equivalent martingale measure for Y :

inf
θ
EQ̂[|(n−N(T ))S(Y (T ), F (T ))− V θ(T )|2

]
.

� We introduce the one-period valuation operator:

ϱ(B) = V ∗
B(0) + π

[(
(n−N(T ))S(Y (T ), F (T ))− V ∗

B(T )
)
e−rT

]
,

with the actuarial valuation rule for the non-hedgeble liability:

π[ξ] = EP[ξ] + RMP[ξ],

where RM stands for a one-period actuarial risk margin.

� Consequently, we consider the one-period valuation operator:

ϱ(B) = V ∗
B(0) + EP

[(
(n−N(T ))S(Y (T ), F (T ))− V ∗

B(T )
)
e−rT

]
+ RMP

[(
(n−N(T ))S(Y (T ), F (T ))− V ∗

B(T )
)
e−rT

]
= Best Estimate of B + Risk Margin for B.
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Multi-period valuation operator

� Let us consider the time points T = 0, h, ..., T − h, T .

� We iteratively and backward apply the one-period valuation operator with

time step h:

φB(T ) = (n−N(T ))S(Y (T ), F (T )),

φB(t) = ϱt

(∫ t+h

t
dB̃(s)

)
, t = 0, h, ..., T − h,

B̃(s) =

∫ s

t
(n−N(u−))A(u, Y (u), F (u))du

+

∫ s

t
D(u, Y (u), F (u))dN(u)

+ φB(t+ h)1{s = t+ h}, t ≤ s ≤ t+ h.

� We introduce the multi-period valuation operator:

φB(t) = V ∗
B̃
(t) + EP

[(
φB(t+ h)− V ∗

B̃
(t+ h)

)
e−rh|Ft

]
+ RMP

[(
φB(t+ h)− V ∗

B̃
(t+ h)

)
e−rh|Ft

]
, t = 0, h, ..., T − h.
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Continuous-time valuation operator

� We would like to extend the definition of the price φB(t) from t ∈ T to all

times t ∈ [0, T ].

� The continuous-time valuation operator φB is defined as an operator

which satisfies the continuous-time limit of the discrete-time pricing

equation.

� We are interested in finding φ which satisfies the limit:

lim
h→0

EP
t,y,f,k

[(
φ(t+ h)− V ∗

B̃
(t+ h)

)
e−rh −

(
φ(t)− V ∗

B̃
(t)

)]
h

+
RMP

t,y,f,k

[(
φ(t+ h)− V ∗

B̃
(t+ h)

)
e−rh −

(
φ(t)− V ∗

B̃
(t)

)]
h

 = 0,

for any (t, y, f, k) ∈ [0, T )× (0,∞)× (0,∞)× {0, ..., n}.
� We choose the actuarial risk margin:

RMP[ξ] =
1

2
γ
√
h

√
VarP[ξ], on [t, t+ h].
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The resulting system of non-linear PDEs

Theorem
Let us consider the system of non-linear PDEs:

φk
t (t, y, f) + φk

y(t, y, f)yr + φk
f (t, y, f)f

(
µF − µY − r

σY
σF ρ

)
+ φk

yf (t, y, f)yfσY σF ρ+
1

2
φk
yy(t, y, f)y

2σ2
Y +

1

2
φk
ff (t, y, f)f

2σ2
F

+
(
φk−1(t, y, f) +D(t, y, f)− φk(t, y, f)

)
kλ(t, y, f) + kA(t, y, f)− φk(t, y, f)r

+Φk
(
t, φk

f (t, y, f)fσF

√
1− ρ2, φk−1(t, y, f) +D(t, y, f)− φk(t, y, f)

)
= 0,

(t, y, f) ∈ [0, T )× (0,∞)× (0,∞),

φk(T, y, f) = kS(y, f), (y, f) ∈ (0,∞)× (0,∞),

for k ∈ {0, ..., n}, where Φk(t, x1, x2) =
1
2γ

√
x2
1 + x2

2kλ(t, y, f) for the standard

deviation actuarial risk margin.

We assume that there exist unique solutions (φk)k=0,...,n to the PDEs. The

continuous-time valuation operator φ determined by the PDEs satisfies the

continuous-time limit of the discrete-time pricing equation as h → 0.
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The resulting system of non-linear PDEs

� We prove

lim
h→0

RMt,y,f,k

[(
φ(t+ h)− V ∗

B̃
(t+ h)

)
e−rh −

(
φ(t)− V ∗

B̃
(t)

)]
h

= Φk
(
t, φk

f (t, y, f)fσF
√

1− ρ2, φk−1(t, y, f) +D(t, y, f)− φk(t, y, f)
)
.

� We can call Φ an instantaneous actuarial risk margin,

� The instantaneous actuarial risk margin puts a price on two non-hedgeable

components: the first is the delta-hedging perfect replication strategy for

the independent component of the risky asset F , the second is the sum at

risk in the event of the policyholder’s death.

� The instantaneous actuarial risk margin gives an economic capital which

should be hold for [t, t+ h] with h → 0.

� The continuous-time valuation operator φ is market-consistent and

actuarial, hence it is fair in the sense of Dhaene et al. (2017).
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The resulting system of non-linear PDEs

Theorem
The continuous-time valuation operator has the representation:

φk(t, y, f) = EQ̂
t,y,f,k

[ ∫ T

t
e−r(s−t)dB(s) +

∫ T

t
e−r(s−t)Φ(s)ds

]
,

(t, y, f) ∈ [0, T ]× (0,∞)× (0,∞), k ∈ {0, ..., n}.

� The valuation operator values liabilities as the best estimate of the liability

plus the total actuarial risk margin for the liability.

� More interpretations and relation to Solvency II pricing principle can be

found in Delong et al. (2019a) and Delong et al. (2019b).
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The resulting system of non-linear PDEs

� Extensions to include more risk factors and more sophisticated pricing

problems are possible (Delong & Barigou (2021)). We always end up with

a system of non-linear PDEs.

� The link between pricing and solving PDEs is well-known in finance and

insurance.

� Our system of PDEs includes Black-Scholes PDE and Thiele’s DE as

special cases.

� How to solve our system of PDEs numerically?
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Solving the system of PDEs with

neural networks



The system of PDEs

� Let z = (y, f). We have to solve the system of non-linear PDEs:

φk
t (t, z) +∇y,fφ

k(t, z) · µ(t, z) + 1

2
Tr

(
σσT(t, z)

(
Hessy,f φ

k
)
(t, z)

)
+
(
φk−1(t, z)− φk(t, z) +D(t, z)

)
kλ(t, z) + kA(t, z)− φk(t, z)r

+Φk
(
t, φk

f (t, z)fσF
√

1− ρ2, φk−1(t, z) +D(t, z)− φk(t, z)
)
= 0,

(t, z) ∈ [0, T )× R2, φk(T, z) = gk(z), z ∈ R2,

for k ∈ {0, ..., n}.
� If we apply finite difference methods, then we face the curse of

dimensionality if the dimension of z is large.

� MC methods are only available for linear PDEs and they provide a solution

for a single fixed initial point.

� LSMC methods require proper choice of the basis functions.

� Main motivation for the research: In order to get the price φn(t, z) for a

portfolio with n policyholders we have to solve n− 1 non-linear PDEs to

get
(
φk(y, z)

)n−1

k=1
. We face large computational times if n is large.
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Solving PDEs using deep learning

� In recent years there is a growing interest in applying

machine learning methods to solve PDEs. In particular,

deep neural networks have proved to be efficient in many learning

(approximation) tasks (universal approximation theorems).

� Han et al. (2018) propose to represent a solution to a PDE as a solution to

a BSDE and approximate the initial value function and the control process

function of the forward version of the BSDE with deep neural networks in

order to match the terminal condition of the BSDE – Deep BSDE.

� Huré et al. (2020) propose to split the global optimization problem from

Han et al. (2018) into multiple local optimization problems constructed

based on dynamic programming principle – Deep BDPP.

� Gnoatto et al. (2022) applies Deep BSDE to PIDEs.

� Castro (2022) applies Deep BDPP to PIDEs.

� In this presentation we apply Deep BDPP to our system of PDEs. In

Delong & Barigou (2021) we applied Deep BSDE.
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Representation as Forward Stochastic Differential Equation

� The price φ is also solution to the following FSDE:

φJ(t)(t, Z(t)) = φn(0, Z(0))

−
∫ t

0

ΥJ(s−)
(
s, Z(s), φJ(s−)(s, Z(s)),

∇y,fφ
J(s−)(s, Z(s))σ(s, Z(s)),(

φJ(s−)−1(s, Z(s))− φJ(s−)(s, Z(s))
)
J(s−)λ(s, Z(s))

)
ds

+

∫ t

0

∇y,fφ
J(s−)(s, Z(s))σ(s, Z(s))dW (s)

+

∫ t

0

(
φJ(s−)−1(s, Z(s))− φJ(s−)(s, Z(s))

)
dÑ(s),

φJ(T )(T,Z(T )) = gJ(T )(Z(T )).

� Starting from an initial price of the liability, the FSDE describes the price

dynamics of the insurance liability controlled with two processes to match the

terminal payment (a forward version of a BSDE).

� The intial price and the control processes are smooth functions of the risk factors

and the time variable. We estimate these functions with deep neural networks by

solving a control problem. 20 / 33



Discretization of the FSDE

� We consider time points 0 = t0 < t1 < ... < tn−1 < tn = T and we

discretize the FSDE with Euler scheme. On [tn, tn+1] we consider:

φ̂J(tn+1)(tn+1, Z(tn+1)) = φJ(tn)(tn, Z(tn))

−ΥJ(tn)
(
tn, Z(tn), φ

J(tn)(tn, Z(tn)),

∇y,fφ
J(tn)(tn, Z(tn))σ(tn, Z(tn)),(

φJ(tn)−1(tn, Z(tn))− φJ(tn)(tn, Z(tn))
)
J(tn)λ(tn, Z(tn))

)
∆tn

+∇φJ(tn)(tn, Z(tn))σ(tn, Y (tn), F (tn))∆W (tn)

+
(
φJ(tn)−1(tn, Z(tn))− φJ(tn)(tn, Z(tn))

)
∆Ñ(tn)

where

∆tn = tn+1 − tn, ∆W (tn) = W (tn+1)−W (tn),

∆Ñ(tn) = N(tn+1)−N(tn)− J(tn)λ(tn, Y (tn), F (tn))∆tn.

with

N(tn+1)−N(tn)
∣∣Ftn ∼ Bin

(
1, J(tn)λ

(
tn, Z(tn)

)
∆tn

)
.
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Deep BDPP for our system of PDEs

� Deep Backward Dynamic Programming Principle:

� We set gJ(T )(T,Z(T )) = J(T )S(Y (T ), F (T )).

� We apply backward induction and go backward from t = tn−1 to t = t0:

� At each point of time t, on [t, t+∆t], we

use two deep neural networks to approximate:

N1: The price at time t:

(k, z) 7→ φk(t, z) ≈ Nϕ
t (k, z).

N2. The price gradient at time t:

(k, z) 7→ ∇φk(t, z)σ(t, z) ≈ Nχ
t (k, z).

� The parameters of the neural networks are estimated to minimize the

quadratic loss function:

E
[∣∣∣φ̂J(t+∆t)(t+∆t, Z(t+∆t))− gJ(t+∆t)(t+∆t, Z(t+∆t))

∣∣∣2] .
� We set gJ(t)(t, Z(t)) = φ̂J(t)(t, Z(t)).
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Deep BDPP for our system of PDEs

Final remarks:

� The number of policies in force k is used as a regressor in the price

function, hence we compute the price for any k in one step.

� Compared to PIDEs and Castro (2022),

we do not learn the jump component since it is related to the price

function.

� The convergence should be proved with the arguments from Huré et al.

(2020) and Castro (2022) – to be done.

Practical remarks:

� The minimization problems are solved via Stochastic Gradient Descent

algorithm based on simulations of
(
J(t), Y (t), F (t)

)tn
t=0

.

� We have to specify the structure of the neural networks (number of hidden

layers, number of nerons, activation functions) and the learning process

(learning rate, batch size, number of epochs, early stopping).

� We use TensorFlow and Keras in R for implementation.
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Numerical examples with Deep

BDPP



Numerical examples

� We consider a portfolio of n = 100 equity-linked life insurance policies.

� By V we denote the policyholder’s account value which results from

investing policyholder’s premium V (0) = 1 in the traded risky asset Y and

collecting fee c from the account by the insurer.

� The death and survival guarantees:

D(t, Y (t)) = (1.05− V (t))+, 0 ≤ t ≤ 1, S(Y (1)) = (1.01− V (1))+.

� The insurer is also exposed to independent non-diversifiable mortality risk

(stochastic intensity) modelled with F .

� We simulate N = 100, 000 sample paths of the risk factors with time step

h = 0.01.
� At each point of time t we use two deep neural networks to approximate:

N1: The price at time t:

(k, v, λ, c) 7→ φk(t, v, λ, c) ≈ N ϕ
t (k, v, λ, c).

N2. The price gradient at time t:

(k, v, λ, c) 7→ ∇φk(t, v, λ, k, c)σ(v, λ) ≈ Nχ
t (k, v, λ, c).
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Numerical examples

Figure 1: Validation of terminal replication errors for γ = 0 – one calibration.
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Numerical examples

Figure 2: Estimation results for γ = 0 – one calibration.
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Numerical examples

c=0.03 c=0.04 c=0.05 c=0.06 c=0.07

NN (deep BDPP) 1.5579 1.1217 0.7182 0.3455 0.0089

MC (true) 1.5370 1.0994 0.7043 0.3641 0.0221

95% MC upper 1.5006 1.0612 0.6641 0.3221 -0.0215

95% MC lower 1.5734 1.1377 0.7445 0.4061 0.0657

n=90 n=100 n=110

NN (deep BDPP) 0.6410 0.7182 0.7966

MC (true) 0.6329 0.7043 0.7755

95% MC upper 0.5967 0.6641 0.7313

95% MC lower 0.6691 0.7445 0.8196

Table 1: Estimation results from 10 calibrations with NN and MC estimates (the

true value based on 1,000,000 obs. and the confidence intervals for the mean

value in a sample with 100,000 obs.).
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Numerical examples

Figure 3: Validation of terminal replication errors for γ = 5 – one calibration.
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Numerical examples

Figure 4: Estimation results for γ = 0 and γ = 5 – one calibration.
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Conclusion



Conclusion

� We derived a system of non-linear PDEs for the fair pricing of a portfolio

of equity-linked life insurance contracts in a general stochastic framework

with various types of financial and insurace risks.

� We used the connection with BSDEs with jumps and proposed an efficient

neural network architecture to solve our system of PDEs with multiple

non-linear PDEs.
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